

ASX Announcement

Cameron Gold Project – Exploration Update

7 December 2015

Exploration potential of Canadian gold project upgraded following discovery of several new mineralised zones during successful summer exploration program

Highlights:

- Rock chip samples of up to 16.75g/t gold and trench sampling results of up to 6.65 g/t gold over 2.0m at the have been received. Better results are summarised below and complete results follow:
 - o T33 prospect (rock chips) 16.75, 14.75, 6.15, 3.14, 2.89 and 1.15 g/t gold;
 - T33 prospect (trench sampling) 6.65 g/t Au over 2.0m (including 11.95 g/t gold over 1.0m and 1.35g/t gold over 1.0m),
 - o Brooks Lake area (rock chips) 8.89, 2.52, 1.52, 1.15 & 1.04 g/t gold
 - Pipestone area (rock chips) 2.19, 1.62 & 1.37 g/t gold
 - *T13 prospect (trench sampling)* **1.68 g/t gold** over 0.6m
 - Nolan prospect (rock chips and trenching) 5.59 g/t gold and 5.0 g/t gold over 1.0m
- Several new areas of coincidental anomalous gold, arsenic, tungsten and antimony pathfinder elements, similar to those found at the Cameron deposit, have been defined from regional multi-element geochemistry sampling
- The expanded exploration potential of the Cameron Project provides a strong pipeline of exploration opportunities for 2016.

Overview

Chalice Gold Mines Limited (ASX: CHN: TSX:CXN – "Chalice" or "the Company") is pleased to report encouraging results from its 2015 exploration program completed at its 100%-owned Cameron Gold Project ("Cameron" or "the Project") in Ontario, Canada.

In conjunction with the release of an updated Mineral Resource estimate for the Cameron Project in November 2015 (Measured, Indicated and Inferred Resource totaling 1.57 million ounces - see ASX Announcement dated 16 November 2015), Chalice has also completed the first modern, systematic exploration program to be undertaken at the Cameron Project.

Exploration activities completed as part of this initiative included a comprehensive surface sampling program that included channel sampling of 10 new targets located in priority areas that had been identified from a previous desktop study, widespread rock chip sampling across the entire property and six reconnaissance MMI soil sampling grids as well as a structural study of key mineralised outcrops.

The results of this new sampling by Chalice include rock chip samples grading up to **16.75g/t gold** and trench sampling results of up to **6.65 g/t gold over 2.0m** (Figure 1 and 3, further details are below), identified several new mineralised zones (Figure 2) and improved the Company's understanding of the controls on mineralisation across the property. The recognition of areas of co-incidental pathfinder elements (gold, arsenic, tungsten and antimony) in close proximity to either know mineral occurrences, 2015 trench anomalism or previously unexplored areas is encouraging and will be followed up in 2016.

Chalice Gold Mines Limited, Level 2, 1292 Hay Street, West Perth, Western Australia T: +618 9322 3960 F: +618 9322 5800 E: info@chalicegold.com www.chalicegold.com Chalice's Managing Director, Mr Tim Goyder said "the 2015 exploration program at the Cameron Gold Project had been very successful, demonstrating the under-explored nature of the region and indicating potential to discover new zones of near surface gold mineralisation in close proximity to the known mineral resources.

This is the first time comprehensive, systematic, modern exploration methodologies have been applied to large areas of this project, and the results have been very pleasing. The program has delivered a range of new, high quality targets outside of the Cameron deposit, significantly upgrading the prospectivity of the broader project area," Mr Goyder said.

"These results give us a pipeline of exploration opportunities to further evaluate in 2016 and, if successful, may grow our mineral resources which could potentially enhance the future economics of the project."

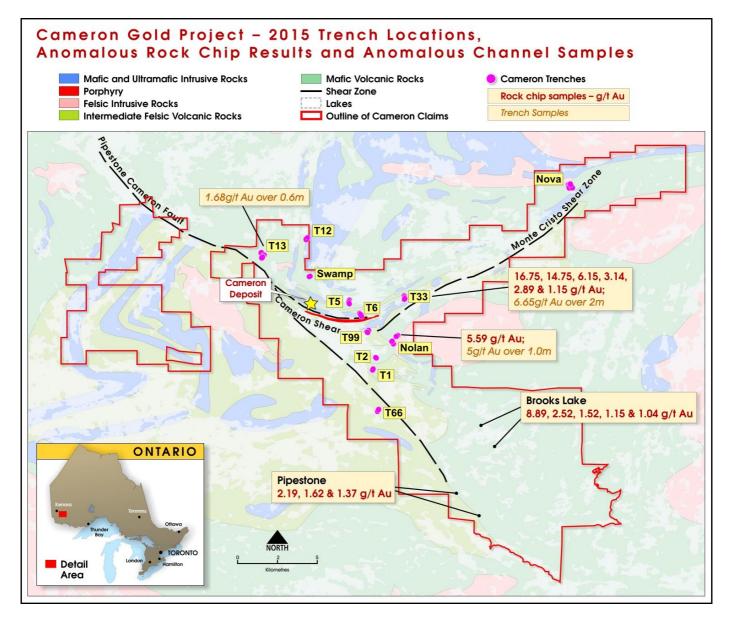


Figure 1: Map showing location of significant rock chip and trenching samples

Rock chip and trench sampling is preliminary in nature and not conclusive evidence of the likelihood of the occurrence of a mineral deposit.

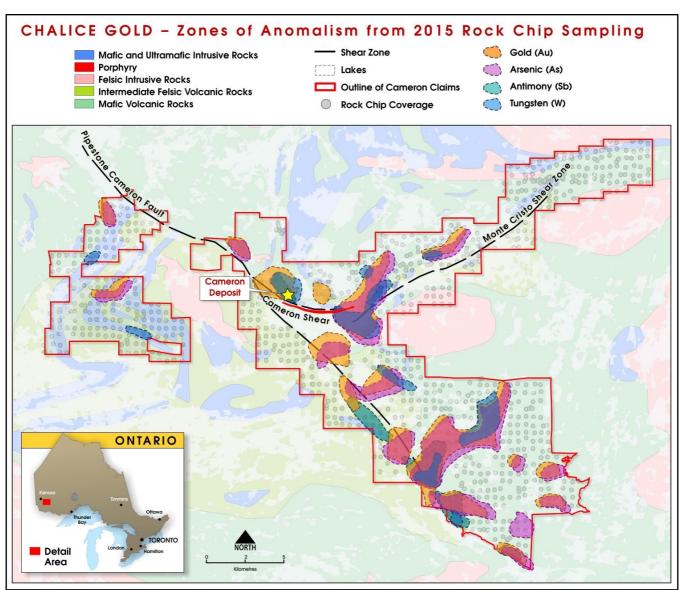


Figure 2: Areas of anomalous gold, arsenic, tungsten and antimony

1. Reconnaissance Rock Chip Sampling and Trenching

Reconnaissance rock chip sampling was completed on 10 prioritised areas defined during a previous targeting exercise. As further follow-up to anomalous rock chip samples, 10 targets were selected for stripping and 14 trenches were cleared with 579 channel samples obtained. Three of the 10 trenching areas returned anomalous results, which are summarised below. These anomalous results were received from new mineralised zones identified in three target areas. The first pass results from these three areas are very encouraging and warrant additional follow-up.

T33 Prospect

The results from rock chip sampling and trenching at the T33 prospect have defined a new zone of mineralisation in the general area of the historic Kiryliw showing. The mineralisation occurs along a 500m trend on the west side of Sullivan Bay. The highest value recorded from rock chips included **16.75 g/t gold (Figure 3; Table 1 for additional results**) and is adjacent to the stripping and trenching undertaken. Significant results from stripping and trenching the T33 prospect included 6.65 g/t gold over 2.0m (including 11.95 g/t gold over 1.0m and 1.35 g/t gold over 1.0m) (Figure 3).

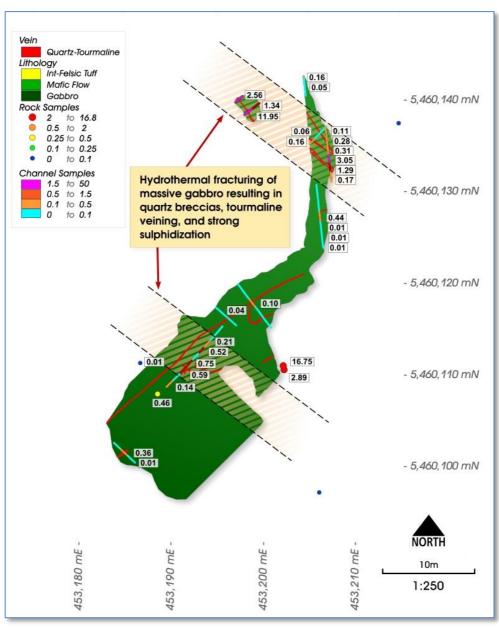


Figure 3: Map of the T33 trench showing significant channel sampling and rock chip assays (UTM Nad 83 Zone 15)

UTM_E	UTM_N	g/t Au
453202.5	5460111	16.75
453344.3	5460230	14.75
453553	5460477	3.14
453298.4	5460083	1.15
453339.7	5460228	6.15
453202.5	5460110	2.89
	UTM_E 453202.5 453344.3 453553 453298.4 453339.7	453202.55460111453344.354602304535535460477453298.45460083453339.75460228

Table 1: Results of rock chip sampling at and in the vicinity of the T33 prospect (UTM Nad 83 Zone 15)
--

Nolan Prospect

A single **5.58g/t gold** sample from the Nolan prospect defines a new mineralised zone along the contact between the west margin of the late tectonic syenite-phase of the Nolan stock and adjacent mafic volcanic flows. Results from stripping and trenching at the Nolan prospect included 5 g/t gold over 1.0m.

Table 2: Results of	rock chip sampling at	Nolan prospect (UTM	Nad 83 Zone 15)
Sample No	UTM_E	UTM_N	g/t Au
1384395	452657	5457852	5.59

T13

Channel sampling at trench T13 returned an anomalous value of **1.68g/t gold** over 0.6 metres.

Table 3: Results of rock chip sampling at T13 prospect (UTM Nad 83 Zone 15)

Sample No	UTM_E	UTM_N	g/t Au
R978704	444135	5462608	1.68

2. Regional Multi-element Geochemical Sampling

1,893 rock chip samples were collected on an approximately 400m x 400m grid (Figure 2). Several zones of anomalous pathfinder elements (arsenic, tungsten and antimony) with similar geochemical signatures to those seen at the Cameron deposit have been identified.

The multi-element geochemical studies has identified trends of pathfinder elements both similar to the Cameron deposit as well as commonly seen around shear-hosted gold deposits elsewhere in Canada. These trends will be field checked in 2016 before appropriate follow-up exploration programs are designed.

Brooks Lake Area

Samples from the Brooks Lake area in the south eastern part of Cameron are from multiple exposures of a south-west striking zone that were sampled along a strike length of approximately 100m along the south shore of Brooks **(Table 4)**; all other assays were less than 1.0 g/t Au. The sample trend may represent a strike extension to the historic Aremis showing, located approximately 120m to the north-east. The mineralisation occurs along a north-east trending structure similar to the Monte Cristo fault in the Cameron Lake area. The area is among the more remote on the property and therefore comparatively little exploration has been completed to date in this area.

0 0		U	
Sample No	UTM_E	UTM_N	g/t Au
293735	459367	5451380	8.89
293732	459365	5451385	2.52
293739	459325	5451376	1.52
293738	459318	5451377	1.15
293849	459413	5451393	1.04

Table 4: Highlights of results of rock chip sampling at Brooks Lake prospect (UTM Nad 83 Zone 15)

Pipestone Area

Samples from the Pipestone area in the south eastern part of Cameron, including **2.19g/t gold** in sample number 1384276 **(Table 5)**, define a new mineralised zone along a major northwest-trending mafic-intermediate volcanic contact along the Pipestone fault with no historical mineralisation having been documented from this area. Other samples from the area also contained anomalous gold but returned assays of less than 1.0 g/t Au.

	Table 5: Highlights of	results of rock chip s	ampling at Pipestone	prospect (UTM Nad 83 Zone 15)
--	------------------------	------------------------	----------------------	-------------------------------

Sample No	UTM_E	UTM_N	g/t Au	
1384276	458447	5445931	2.19	
293683	458448	5445928	1.62	
293685	458449	5445928	1.37	

3. Alteration Study

Spectral data from 4,294 samples were collected using a Halo scanner on all reconnaissance rock samples as well as along all trenches and from most of the 2010-2012 drill holes on the Cameron deposit. Anomalous white mica and Al-chlorite results are being combined with rock geochemistry to prioritise targets for follow-up in 2016.

4. Structural Study

A new structural mapping program was also completed during the summer on select key deposits and locations within the property. The results, combined with the outcome of the summer's re-logging and in-fill sampling program on the Cameron deposit, have significantly improved the Company's understanding of the mineralisation controls on the property.

5. JORC 2012

Further details on sampling techniques, reporting of exploration results and estimation can be found within the JORC 2012 tables at appendix 1.

Tim hoyd

TIM GOYDER Managing Director

For further information, please contact: Gary Snow, COO Tim Goyder, Managing Director Chalice Gold Mines Limited Telephone +61 9322 3960 For media inquiries, please contact: Nicholas Read Read Corporate Telephone: +618 9388 1474

Competent Person and Qualifying Person Statements

Cameron Gold Project - Exploration

The information in this announcement that relates to Exploration Results in relation to the Cameron Gold Project is based on information compiled by Mr Gary Snow, who is a Fellow of the Australasian Institute of Mining and Metallurgy and is a Fellow of the Australian Institute of Geoscientists. Mr Snow is a full-time employee of the company and has sufficient experience in the field of activity being reported to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Snow consents to the release of information in the form and context in which it appears here.

The information in this report that relates to Exploration Results in relation to the Cameron Gold Project is based on information compiled by Mr J W Patrick Lengyel, who is a non-independent "Qualified Person" as defined in National Instrument 43-101 – 'Standards of Disclosure for Mineral Projects'. The Qualified Person has verified and approved the data disclosed in this release, including sampling, analytical and test data underlying the information contained in this release.

Cameron Gold Project – Mineral Resource Estimate

The information relating to the Cameron Gold Project Mineral Resource estimate is extracted from the ASX Announcement entitled "Updated 1.57Moz Mineral Resource for the Cameron Gold Project" released on 16 November 2015 and is available to view at www.chalicegold.com. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of mineral resources, that all material assumptions and technical parameters underpinning the estimates in relation to these deposits in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially modified from the original market announcement.

Forward Looking Statements

This document may contain forward-looking information within the meaning of Canadian securities legislation and forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995 (collectively, forward-looking statements). These forward-looking statements are made as of the date of this document and Chalice Gold Mines Limited (the Company) does not intend, and does not assume any obligation, to update these forward-looking statements.

Forward-looking statements relate to future events or future performance and reflect Company management's expectations or beliefs regarding future events and include, but are not limited to, the estimation of mineral reserve and mineral resources, the realisation of mineral reserve estimates, the likelihood of exploration success, the potential future economics of the project, the timing and amount of estimated future production, costs of production, capital expenditures, success of mining operations, environmental risks, unanticipated reclamation expenses, title disputes or claims and limitations on insurance coverage.

In certain cases, forward-looking statements can be identified by the use of words such as plans, expects or does not expect, is expected, will, may would, budget, scheduled, estimates, forecasts, intends, anticipates or does not anticipate, or believes, or variations of such words and phrases or statements that certain actions, events or results may, could, would, might or will be taken, occur or be achieved or the negative of these terms or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Such factors may include, among others, risks related to actual results of current exploration activities; changes in project parameters as plans continue to be refined; future prices of mineral resources; possible variations in mineral resources or ore reserves, grade or recovery rates; accidents, labour disputes and other risks of the mining industry; delays in obtaining governmental approvals or financing or in the completion of development or construction activities; as well as those factors detailed from time to time in the Company's interim and annual financial statements and management's discussion and analysis of those statements, all of which are filed and available for review on SEDAR at sedar.com. Although the Company has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking statements, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that forward-looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements.

Accordingly, readers should not place undue reliance on forward-looking statements.

Appendix 1 – JORC 2012 TABLE 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary		
Sampling techniques		 510 mobile metal ion soil samples were collected using a hand auge and taken from 10-25cm depth. Samples were not split in the field. 579 trench samples/channels were cut with a gas-powered chop saw using diamond blades. Sample widths were approximately 2 cm, depth approximately 5 cm, with sample material chiseled out of cuts using a steel chisel/hammer into plastic sample bags. Where samples were not strongly altered or mineralized, rock chip samples were taker instead of channel samples. 		
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement			
	tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc).	1893 rock chips were taken using a 3-4 lb hammer, with samples bagged in plastic sample bags.		
	These examples should not be taken as limiting the broad meaning of sampling.	4294 short-wave infra-red samples were collected across the property, often at the same locations as the rock chip samples. These samples were collected in the field and brought back to site where they were analysed using an ASD TerraSpec [®] Halo machine. The Halo is a near infrared spectrometer and captures spectra in the visible near-infrared and near-infrared ranges. The Halo analyses the O-H bonds in minerals and is able to identify up to four minerals in a single sample. The Halo will provide a one to three star rating based on the confidence level of the reading (three stars being highest confidence).		
	Include reference to measures taken to ensure sample	Soil and rock samples comprise multiple chips / volume considered to be representative of the horizon or outcrop being sampled.		
	representivity and the appropriate calibration of any measurement tools or systems used	The Halo requires an external white reference when it is first turned on and takes about a minute to calibrate. Subsequently, it has an internal white reference which it will use periodically whilst being operated.		
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Samples were collected whole, and submitted to accredited commercial laboratories for preparation and analysis using industry standard techniques.		
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	All drilling has been previously disclosed. Although hand augers have been utilised in the collection of soil samples, this has not been regarded as "drilling".		
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	Not applicable		
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Not applicable		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not applicable		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Samples are described in detail in the field and captured in excel/database.		
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging of the geological features was predominately qualitative. Parameters such as sulphide abundances are visual estimates by the logging geologist.		
		The geological and geotechnical logging is at an appropriate level for the stage of exploration being undertaken.		

riteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged	Not applicable.
b-sampling chniques and sample eparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Samples are not split in the field. Volumes/weights are only reduce at commercial laboratories following sample preparation procedure outlined below.
		Samples are submitted to commercial laboratories for preparation ar analysis using standard industry practice at ISO/IEC 17025 and ISO 900 accredited laboratories.
		Rock chip and channel samples taken away from the Cameron depo were prepared and analysed at ALS (accredited to ISO/IEC 17025:20) and ISO 9001:2008). Samples received at ALS are unpacked, sorte logged in LIMS database and dried. Samples are then crushed to 70 <2mm, then split using a riffle splitter. The ~250g split is pulverized 85% passing 75 microns, then fused with a mixture of lead oxic sodium carbonate, borax, silica, and other reagents as require inquarted with 6 mg of gold-free silver then cupelled to yield a precio metal bead. The bead is digested in 0.5 mL dilute nitric acid in microwave oven, then 0.5 mL concentrated hydrochloric acid is add and the bead is further digested in the microwave at a lower pow setting. The digested solution is cooled, diluted to a total volume of mL with demineralized water, and analysed by atomic absorptio spectroscopy against matrix-matched standards. The ICP (48 eleme four acid ICP-MS lab packages Au-AA23 and ME-MS61) sample is cut 0.25g and is digested with perchloric, nitric, and hydrofluoric acids. Ti residue is leached with dilute hydrochloric acid and diluted to volum The final solution is then analysed by inductively coupled plasma-ma spectrometry. Results are corrected for spectral inter-eleme interferences.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Relogged channels and pulps from the Cameron deposit were prepare and analysed at Actlabs (accredited to ISO/IEC 17025, including IS 9001 and ISO 9002 with CAN-P-1579 (Mineral Analysis) for speci- registered tests by the SCC). Samples were received in poly bag packed inside of rice bags that are inside of plastic collapsible crate Samples were sorted, loaded into the drying room at 60 degree logged into the LIMS database then crushed to a minimum of 80 <2mm. Samples were then split using a Jones Riffle to achieve a subsamp between 250g and 300g which was pulverized to 95% -105 micron. Fii crush duplicates are taken every 50 samples. A 30g Aliquot is weight and mixed with a PbO mixture and Ag was added as a collector. Eve batch of 35 samples contains an additional 2 standards, 2 blanks and duplicates to fill the furnace to a load of 42. Samples were then fuse in our fire assay furnaces poured, de-slagged and then cupelled. Th finishing silver doré was then picked and put into glass test tubes the transferred to porcelain crucibles and the gold was parted using nitu acid. The resulting gold flake was annealed and the remaining go flake was weighed using a gravimetric balance.
		Soil samples were sent to SGS Minerals for preparation and analysis (ISO/IEC 17025 accredited laboratory located in Don Mills, Toront Ontario). Soil samples analysed using the MMI [™] process undergo no drying preparation. Sub-samples of 50 g were shaken with a weak extraction solution and analysed for the MMI-M package via ICP-MS. 8 blanks and 7 field duplicates were inserted with the samples. No soil standar were used in the current program due to the lack of readily available reference materials.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Crush duplicates, standards and blanks are inserted by the laborato at a rate of 1/20.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results	All QA/QC controls and measures are routinely reviewed and report on at

Criteria	JORC Code explanation	Commentary
	for field duplicate/second-half sampling.	the completion of the program. 7 soil sample field duplicates wer included.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes were decided by the infield geologist, and based on numerous factors including grain size.
Quality of assay data and laboratory tests		Samples are submitted to commercial laboratories for preparation ar analysis using standard industry practice at ISO/IEC 17025 and ISO 900 accredited laboratories.
		Rock chip and channel samples taken away from the Cameron depose were prepared and analysed at ALS (accredited tom ISO/IE 17025:2005 and ISO 9001:2008). Samples received at ALS a unpacked, sorted, logged in LIMS database and dried. Samples crushed to 70% <2mm, then split using a riffle splitter. The ~ 250g sp is pulverized to 85% passing 75 microns, then fused with a mixture of lead oxide, sodium carbonate, borax, silica, and other reagents a required, inquarted with 6 mg of gold-free silver then cupelled to yie a precious metal bead. The bead is digested in 0.5 mL dilute nitric act in a microwave oven, then 0.5 mL concentrated hydrochloric acid added and the bead is further digested in the microwave at a low power setting. The digested solution is cooled, diluted to a total volum of 4 mL with demineralized water, and analysed by atomic absorptic spectroscopy against matrix-matched standards. The ICP (48 eleme four acid ICP-MS lab packages Au-AA23 and ME-MS61) sample is cut 0.25g and is digested with perchloric, nitric, and hydrofluoric acids. Th residue is leached with dilute hydrochloric acid and diluted to volum The final solution is then analysed by inductively coupled plasma-ma spectrometry. Results are corrected for spectral inter-eleme interferences.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Relogged channels and pulps from the Cameron deposit were prepare and analysed at Actlabs (accredited to ISO/IEC 17025, including IS 9001 and ISO 9002 with CAN-P-1579 (Mineral Analysis) for specif registered tests by the SCC). Samples were received in poly bags packet inside of rice bags that are inside of plastic collapsible crates. Sampl were sorted, loaded into the drying room at 60 degrees, logged in the LIMS database then crushed to a minimum of 80% <2mm. Samples were then split using a Jones Riffle to achieve a subsamp between 250g and 300g which was pulverized to 95% -105 micron. Fin crush duplicates are taken every 50 samples. A 30g Aliquot is weighe and mixed with a PbO mixture and Ag was added as a collector. Eve batch of 35 samples contains an additional 2 standards, 2 blanks and duplicates to fill the furnace to a load of 42. Samples were then fuse in our fire assay furnaces poured, de-slagged and then cupelled. The finishing silver doré was then picked and put into glass test tubes the transferred to porcelain crucibles and the gold was parted using nitr acid. The resulting gold flake was annealed and the remaining go flake was weighed using a gravimetric balance.
		Soil samples were sent to SGS Minerals for preparation and analysis (ISO/IEC 17025 accredited laboratory located in Don Mills, Toront Ontario). Soil samples analysed using the MMI [™] process undergo no drying preparation. Sub-samples of 50 g were shaken with a weak extraction solution and analysed for the MMI-M package via ICP-MS. Detection limits for each element analysed are presented below. 8 blanks and field duplicates were inserted with the samples. No soil standards we used in the current program due to the lack of readily available reference materials.

Criteria	JORC Code explanation	Comme	ntary					
		Element	Unit	Detection limit	Element	Unit	Detection limit	
		Ag	ppb		Nb	ppb	0.5	
		Al	ppm	1		ppb	1 5	
		As Au	ppb ppb	10 0.1		ppb ppm	0.1	
		Ba	ppb	10		ppb	10	
		Bi Ca	ppb ppm	1 10		ppb ppb	1	
		Cd	ppb	1	Pt	ppb	1	
		Ce Co	ppb ppb	5	Rb Sb	ppb ppb	5 1	
		Cr	ppb	100		ppb	5	
		Cs Cu	ppb ppb	0.5 10		ppb ppb	1	
		Dy	ppb	10		ppb	10	
		Er	ppb	0.5		ppb	1	
		Eu Fe	ppb ppm	0.5	Тb Te	ppb ppb	1 10	
		Ga	ppb	1	Th	ppb	0.5	
		Gd Hg	ppb ppb		Ti Tl	ppb ppb	3 0.5	
		In	ppb	0.5	U	ppb	1	
		K	ppm ppb	0.1		NA	1	
		La Li	ppb ppb	1	W Y	ppb ppb	1 1	
		Mg	ppm		Yb	ppb	1	
		Mn Mo	ppb ppb	10 5	Zn Zr	ppb ppb	20 5	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	the and takes about a minute to calibrate. Subsequently, it has				r, it has an inte		
		addition	to labo e inser	oratory ins	serted st	andaro	ds/blanks o	ples by Chalic r crush duplic icate soil san
	Nature of quality control procedures adopted (e.g. standards blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precisior		In the sample stream, and rely solely on laboratory inserted standard blanks and crush duplicates.					
	have been established.	at the co however limit resu sample n	mpletio one b Ilts and umber	on of the lank from was assu . Only or	program trench med to b ne standa	. No s sampli be due ard sar	erious issuents of the second	eted, and repo es were ident d above deter with the prev (>3 std dev)
/erification of sampling Ind assaying			now (Chalic	e Gold Ltd)				
	The use of twinned holes.	Not applicable.						
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.				a sampling e are merged ard/blank QA the merged			
	Discuss any adjustment to assay data.	Not applicable.						
ocation of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	is within	10m X		m in the	-		Location accu ever is genera
	Specification of the grid system used.	All sampl datum.	e infoi	mation h	as been	refere	nced to the	e NAD83, Zon
	Quality and adequacy of topographic control.	Topograp Geomatic		ntrol is ta	aken fro	m an a	aerial surve	ey flown by A

Criteria	JORC Code explanation	Commentary
		Winnipeg, Manitoba in 2010. The survey provided a Digital Elevation Model (DEM) contoured at one metre intervals.
Data spacing and distribution		A total of 510 MMI soil samples were collected from three reconnaissance sampling grids in the Nova showing area, the South Cedartree area adjacent to the historic Wicks showing, and from the Brooks Lake/Pipestone areas to the south. Detailed MMI sampling in 2014 around the Cameron deposit had already proven the usefulness of this method
	Data spacing for reporting of Exploration Results.	Nova was poorly defined by historic geological mapping and so was completed on 400 x 400m centres to provide maximum coverage, Sampling near the historic Wicks showing was completed on 400 x 200m centres because the prospective contact was better defined. Sampling from the Brooks Lake/Pipestone areas was conducted on approximately 100m x 250m centres.
		Rock chips were collected on approximately 400m centres, plus additional outcrops of interest, however as sampling requires availability of outcrop, it was not always possible to obtain samples on planned locations.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable.
	Whether sample compositing has been applied.	Not applicable.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The MMI surveys were oriented with lines perpendicular to prospective structures. Rock samples were collected based on field observations and the availability of outcrop, and were not collected on regular, even spaced grid, although in general samples were collected on ~400m centres
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No drilling reported.
Sample security	The measures taken to ensure sample security.	Samples were packed in plastic sample bags, then placed inside rice sacks. Each rice bag was sealed with a numbered security tag, which was recorded with the associated sample numbers. The rice bags were placed in plastic crates which were picked up by Gardewine once a week. The crates were loaded directly into the truck by Chalice staff. Paper work was sent with the Gardewine driver as well as an electronic copy being emailed directly to the lab. When the lab received the samples they would ensure the security tags had not been broken, and once they opened the rice bags, confirm that the samples on the paperwork were physically there.
		A tracking system in the form of an excel spreadsheet tracked when every sample left site, when it was received by the lab, and when results were received. Each shipment had a number associated with it, which would then have the security tag numbers attached, which then had the samples numbers attached.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical	<u>Cameron Gold Project:</u> The Cameron Gold Project is an advanced exploration project located in the southern part of western Ontario approximately 80kms south-east of the town of Kenora. The project area is accessible all year round by sealed and unsealed road. The Cameron Gold Project currently consists of two project areas namely Cameron, which includes the Cameron Deposit and West Cedartree which includes the Dubenski and Dogpaw deposits.

Cri	1.7	T	
			e .

JORC Code explanation

sites, wilderness or national park and environmental settings.

Commentary

The Cameron Gold Project contains a total of 154 unpatented claims, 24 patented claims (mineral rights only) and seven mining licences of occupation (MLO) plus four mining leases. All of the claims are located within unsurveyed crown lands, mainly in the Rowan Lake area, though some claims are situated in the Tadpole Lake, Brooks Lake and Lawrence Lake areas.

The total area of the project is approximately 316.73km².

Current Ownership:

The Project is owned by Cameron Gold Operations (CGO) Limited, a wholly owned subsidiary of Chalice Gold Mines Limited Ownership is pursuant to either a 100% direct interest in the underlying licences or option agreements whereby Chalice may acquire a 100% interest upon making certain payments to the vendor.

The Cameron deposit specifically, is subject to 1% NSR plus a \$0.30 per ton royalty on all ore mined and milled. In March 2015, Chalice exercised its right to buy back two thirds, or 2% of the existing 3% NSR relating to the Cameron deposit for \$2 million.

The greater Project area is also subject to certain underlying net smelter royalties ranging between 1.5% and 3% with the majority having rights to buy back part of the royalty.

In July 2014, Chalice acquired 100% of the Dubenski Gold Deposit for C\$700,000, which was previously under an option agreement. In addition, there is an additional payment on all gold production mined in excess of 70,000 ounces (being US\$13 per ounce where the gold price is less than or equal to US\$1,500 per ounce and US\$16 per ounce where the gold price is greater than US\$1,500 per ounce).

Recent Ownership History:

Cameron Gold Project

On February 5th 2014 Chalice and Coventry Resources Inc (Coventry), the former owner of CGO, successfully completed a Plan of Arrangement under which Chalice acquired a 100% interest in the Cameron Gold Project. Under this arrangement Coventry shareholders received 46M Chalice shares.

Cameron Lake, Dubenski & Dogpaw:

According to the Mining Act (Ontario), except where otherwise provided, the holder of a prospector's licence may prospect for minerals and stake a mining claim on any Crown land (surveyed or unsurveyed). Unpatented lands are lands in which the surface and mining rights have been reserved by the Crown. Individual unpatented mining claims are comprised of a multiple of 16 Ha (40 Acre) blocks. In order to maintain the title to an unpatented mining claim indefinitely, the recorded holder of the claim is required to undertake approved work expenditure in excess of \$400 per claim within two years of the granting of the claim. Work programs and expenditure commitments can be grouped across a contiguous series of unpatented mining claims. To maintain the unpatented claims comprising the Cameron Project in good standing, Chalice is required to incur an aggregate expenditure of \$274,400 per year and to file annual assessment reports of the work that has been undertaken.

The recorded holder of an unpatented mining claim does not own the land and has no title permitting mineral extraction unless it converts the said mining claim to a mining lease under Section 81 of the Mining Act. Prior to the grant of a mining lease, certain conditions must be fulfilled including a survey of boundaries of the claims. Once granted the duration of a mining lease is 21 years. This can be renewed on application. The mining leases within the Cameron Project were initially granted in 1988 and were subsequently renewed for a further 21 years in July, 2009, except CLM 289 which was renewed in May 2006. The annual fee for all mining leases held by Cameron Gold Operations is \$2,078.61.

Patented lands are private property in which the surface and mining rights are not held by the Crown. No assessment work is required on these claims, although land taxes are levied against the claim holder if the patented claim includes the surface rights associated with the claim. As the surface rights for all patented claims within the Cameron Project are held by other parties, Chalice is not required to pay any such fees.

Mining Licences of Occupation (MLO's) are a type of claim that was once commonly issued to permit the mining of minerals under the beds of water bodies. On rare occasions the licence may include portions of dry land. Issued in perpetuity, there is no requirement to renew a MLO. All MLO's are subject to an annual flat rental fee of \$5.00 per hectare. The holder of a patented mining claim covering predominately dry land may also hold a MLO within the patented claim, for the water portion of the same mining claim.

The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Criteria	JORC Code explanation	Commentary
		All patented and unpatented mining claims, licences of occupation and mining leases are held in the name of Cameron Gold Operations Limited, except those claims and leases currently under option. As of the effective date of this Technical Report, all are in good standing. The author is not aware of any outstanding aboriginal land rights or land claims over the project area. Chalice enjoys full and unfettered legal access to all claims comprising the Cameron Project.
Exploration done by other parties		The Cameron deposit in particular, has received considerable exploration over the last 80 years. All historical exploration, including the results of Chalice' relogging, resampling and resource estimate update completed in 2015 have been disclosed to the market, and as such this announcement solely relates to regional reconnaissance rock chip, trenching, channel and soil sampling completed in 2015. Many of the trenching sites were selected based on MMI soil and rock chip sampling completed in 2014 over the Cameron deposit and nearby areas, as well as inversion of existing induced polarisation survey results. Soil sampling areas were selected based on historical information and field observations/rock chip sampling. Many of the targets have received limited historical exploration drilling. Since 2012 Coventry and/or Chalice have drilled 40 RC holes for 219.5m and 15 diamond holes for 2559.5m. Outside of the Cameron Lake, Dubenski and Dogpaw deposits, none have JORC compliant resources.
	Acknowledgment and appraisal of exploration by other parties.	prospecting, line cutting, geological mapping, trenching, solir and outcrop sampling and ground magnetic, electromagnetic (EM) and induced polarisation (IP) geophysical surveys Drilling was first undertaken in July 1960 and now totals 981 holes for 120,813 m. In 1987 at the Cameron deposit, underground development for an extensive sampling program was undertaken. Some 65,000m ³ of material was excavated with some bulk sampling, diamond drilling and rock chip sampling completed. Between 2010 and 2012 Coventry drilled 242 surface diamond holes totalling 36,000m with the majority on the Cameron deposit. Exploration at the West Cedartree Gold Project commenced in 1936 (Dubenski) and 1944 (DogPaw), and has been conducted intermittently until the present day. The most significant
		 exploration directed at the Dubenski deposit has been undertaken during the late 1990's by Avalon Ventures Inc. and from 2007 onwards by Houston Lake Mining. The total drilled for each deposit is: Dubenski 272 diamond drill holes (30,674.3m) Dogpaw 235 diamond drill holes (19,597m). Three other prospects have been drilled, namely McLennans, Angel Hill and Robertson and an historical non-compliant mineral resource has been quoted for the Angel Hill prospect.
		There has been numerous underground workings (mainly shafts) excavated, and in 1995 ar open pit excavation was undertaken at the Dogpaw deposit to generate a bulk sample.
Geology	Deposit type, geological setting and style of mineralisation.	The Cameron Gold Project setting is an Archaean granite-greenstone terrane. It is situated in the western end of the Late Archaean Savant Lake- Crow Lake Belt in the Western Wabigoon Subprovince of the Superior Province in north-western Ontario. The Savant Lake-Crow Lake Belt comprises a number of individual greenstone belts that are most commonly separated by large scale faults and shear zones. Gold mineralization is being sought, with no deposit style being exclusively targeted
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	Not applicable.
Data aggregation	 dip and azimuth of the hole down hole length and interception depth hole length. In reporting Exploration Results, weighting exercise techniques, maximum and/or.	
methods	averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No grade capping has been applied.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Trench samples are reported using a minimum cut-off grade of 1 g/t Au, and no minimum width or dilution.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Channel samples have been taken from trenches/excavated sites and where possible have been taken as close to perpendicular to mineralisation as possible, however samples are taken from exposed surfaces, not drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures and tabulations in the main text and Appendices.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Refer to figures and tabulations in the main text and Appendices.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	For detailed data relating to the Cameron, Dubenski or Dogpaw deposits please see previous disclosures. Other work completed by Chalice in 2015 that is still being analysed includes the collection of 4294 short wave infra-red spectra using a Terraspec Halo and the initiation of a lake sediment survey, however after 43 samples were collected this had to be postponed due to weather.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Future work programs are being assessed with a view to highlight and prioritise targets for further exploration and/or drilling.

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Not applicable
	Data validation procedures used.	Not applicable
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Not applicable
	If no site visits have been undertaken indicate why this is the case.	

Criteria	JORC Code explanation	Commentary
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Not applicable
	Nature of the data used and of any assumptions made.	Not applicable
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Not applicable
	The use of geology in guiding and controlling Mineral Resource estimation.	Not applicable
	The factors affecting continuity both of grade and geology.	Not applicable
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource	Not applicable
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Not applicable
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	
	The assumptions made regarding recovery of by-products.	Not applicable
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	Not applicable
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Not applicable
	Any assumptions behind modelling of selective mining units.	Not applicable
	Any assumptions about correlation between variables.	Not applicable
	Description of how the geological interpretation was used to control the resource estimates.	Not applicable
	Discussion of basis for using or not using grade cutting or capping.	Not applicable
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	Not applicable
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Not applicable
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied	Not applicable
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Not applicable
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Not applicable

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made	Not applicable
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Not applicable
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit,	Not applicable
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Not applicable
Classification	The basis for the classification of the Mineral Resources into varying confidence categories	Not applicable
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Not applicable
	Whether the result appropriately reflects the Competent Person's view of the deposit.	Not applicable
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Not applicable
	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate	Not applicable
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used	Not applicable
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	Not applicable