

MINERAL RESOURCES LIMITED

WODGINA EXPLORATION UPDATE

17 March 2017

EXECUTIVE SUMMARY

- Significant pegmatite intercepts continue to be drilled with assays pending.
- Grades >4% Li₂O recorded at the Cassiterite NE prospect.

EXPLORATION UPDATE FOR THE WODGINA CASSITERITE NE PROSPECT

Mineral Resources Limited (ASX: MIN) ("MRL"), are pleased to announce an exploration update and significant Li₂O intervals from an on-going exploration drilling program at the Wodgina Lithium Project, carried out between September 2016 to present.

The exploration drill program has to date been successful in intercepting high grade Li₂O pegmatites, from which two resource estimates for the Wodgina Lithium project have been generated. The first 25Mt at 1.38% Li₂O from the Cassiterite pit (refer to MIN ASX announcement dated 17/02/2017) and the second an upgrade to 65Mt at 1.38% Li₂O from a 40Mt maiden resource from the Cassiterite NE prospect, in addition to the Cassiterite pit (refer to MIN ASX announcement dated 02/03/2017). MRL are confident of increasing the resource, based on further exploration, continuity of geology and significant pegmatite intercepts.

Exploration drilling at Cassiterite NE is ongoing with further significant intercepts:

- WLRC0043 with 108m@1.7% Li₂O from 190 to 298 metres
- WLRC0044 with 135m@1.9 % Li₂O from 179 to 316 metres
- WLRC0039 with 127m@1.8% Li₂O from 186 to 313 metres

Drill results for easterly drill holes at the Cassiterite NE prospect have highlighted the potential to expand the resource, (refer to Long section 03) with high grade assays including:

- WLRC0047 with 130m of mineralised pegmatite including 83m@1.7% Li₂O from 47 to 130 metres
- WLRC0048 with 130m of mineralised pegmatite including 49m@1.6% Li₂O from 69 to 118 metres

A complete table of significant intervals is attached.

In addition, the following assays have been returned with exceptional grades >4% Li_2O , indicating a unique deposit for the region:

- WLRC0042 with 2m@4.3% Li_2O from 286 to 288 metres, 1m@4.04% Li_2O from 298 to 299 metres and 2m@4.58% Li_2O from 302 to 304 metres
- WLRC0044 with 1m@4.3% Li₂O from 278 to 279 metres and 7m@4.34% Li₂O from 296 to 303 metres

Recent drill holes, WLRC0113 and WLRC0114, located to the western end of the Cassiterite NE prospect, have intercepted significant pegmatite intervals >100m thick and with potential to extend the Cassiterite NE resource a further 120m (refer to Long section 01).

Pending heritage clearance, further step out and regional drilling will be undertaken to assess the prospects greater potential (refer to cross section 04).

Figure 1 - Plan view of the Cassiterite NE prospect

With the red areas and arrows indicating areas to potentially expand the boundaries of the mineralised pegmatite

Figure 2 - Long section 03 across Cassiterite NE

Showing area included in the new resource area with assays pending and area still to be drilled. Note that WLRC0047 and WLRC0048 have not yet been included as part of the Cassiterite NE resource estimate, as we are awaiting further assays.

Figure 3 - Long section 01 across Cassiterite NE

The section shows the significant step out to the west that could expand the Cassiterite NE resource a further 120m along strike, once assays have been returned.

Figure 4 - Cross section 04 across the Cassiterite NE prospect

To show one of the significant step out areas to the northwest that will be tested, once heritage clearance has been approved.

COLLAR TABLE FOR RECENT RESOURCE & EXPLORATION AT THE WODGINA PROJECT

Hole ID	Easting MGA	Northing MGA	MGA RL	Azimuth	Dip	Actual Hole Length (EOH)	Assays Returned
CASSITERITE N	ORTH EAST RESO	URCE & EXPLORATIO	ON DRILLING				
WLRC0026	674,042	7,655,726	239	311	-80	184	Yes
WLRC0027	674,053	7,655,948	223	311	-45	177	Yes
WLRC0028	674,154	7,655,861	250	311	-60	220	Yes
WLRC0029	674,155	7,655,860	250	0	-90	214	Yes
WLRC0030	674,161	7,655,855	251	131	-60	200	Yes
WLRC0031	674,209	7,655,881	253	311	-60	232	Yes
WLRC0033	674,141	7,656,307	290	311	-60	181	Yes
WLRC0034	674,144	7,656,304	290	0	-90	211	Yes
WLRC0035	674,173	7,656,280	290	0	-90	250	Yes
WLRC0036	674,203	7,656,258	290	0	-90	316	Yes
WLRC0037	674,235	7,656,234	289	0	-90	316	Yes
WLRC0039	674,211	7,656,207	289	0	-90	310	Yes
WLRC0040	674,117	7,656,272	291	0	-90	220.5	Yes
WLRC0041	674,150	7,656,253	290	0	-90	310	Yes
WLRC0042	674,174	7,656,337	291	0	-90	316	Yes
WLRC0043	674,202	7,656,313	290	0	-90	412	Yes
WLRC0044	674,231	7,656,288	290	0	-90	376	Yes
WLRC0045	674,262	7,656,262	289	0	-90	442	Yes
WLRC0046	674,262	7,656,262	289	131	-60	334	Yes
WLRC0047	674,438	7,656,467	266	0	-90	424	Yes
WLRC0048	674,470	7,656,503	263	0	-90	238	Yes
WLRC0049	674,420	7,656,444	272	0	-90	244	Yes
WLRC0050	674,393	7,656,415	274	0	-90	270	Yes
WLRC0051	674,253	7,656,427	289	0	-90	251	Yes
WLRC0052	674,282	7,656,404	289	0	-90	322	Yes
WLRC0053	674,224	7,656,399	290	0	-90	316	Yes
WLRC0054	674,222	7,656,400	290	311	-60	316	Yes
WLRC0055	674,254	7,656,372	289	0	-90	310	Yes
WLRC0056	674,273	7,656,350	289	0	-90	364	Yes
WLRC0057	674,198	7,656,371	291	0	-90	382	Yes
WLRC0058	674,198	7,656,371	291	311	-60	232	Yes
WLRC0059	674,228	7,656,344	290	0	-90	376	Yes
WLRC0060	674,258	7,656,318	290	0	-90	351	Pending
WLRC0061	674,318	7,656,266	288	0	-90	350	Pending
WLRC0063	674,117	7,656,272	291	0	-90	379	Pending
WLRC0064	674,461	7,656,247	275	0	-90	256	Pending
WLRC0065	674,488	7,656,278	274	0	-90	232	Pending
WLRC0066	674,407	7,656,305	275	0	-90	280	Pending
WLRC0067	674,381	7,656,339	275	0	-90	227	Pending
WLRC0068	674,407	7,656,247	276	0	-90	208	Pending
WLRC0069	674488	7656278	274	131	-60	264	Pending
WLRC0070	674461	7656247	275	131	-60	250	Pending
WLRC0071	674483	7656333	273	45	-60	Now drilling	Pending
WLRC0101	674,427	7,656,330	274	0	-90	256	Pending
WLRC0102	674,397	7,656,356	274	0	-90	220	Pending
WLRC0103	674,484	7,656,334	273	0	-90	214	Pending
WLRC0104	674,431	7,656,274	275	0	-90	262	Pending
WLRC0105	674,450	7,656,417	273	0	-90	220	Pending
WLRC0106	674,423	7,656,386	273	0	-90	208	Pending
WLRC0107	674,514	7,656,308	273	0	-90	180	Pending

WLRC0108	674,454	7,656,360	273	0	-90	202	Pending
WLRC0109	674,415	7,656,499	267	0	-90	238	Pending
WLRC0110	674,415	7,656,499	267	311	-60	172	Pending
WLRC0111	674,476	7,656,447	260	0	-90	216	Pending
WLRC0112	674,465	7,656,453	264	131	-60	274	Pending
WLRC0113	674001	7656229	320	0	-90	394	Pending
WLRC0114	673970	7656257	320	221	-70	406	Pending
WLRC0115	673970	7656257	320	41	-60	406	Pending
WLRC0116	674,171	7,656,340	291	311	-60	Now drilling	Pending

*Holes in blue have been completed since the first exploration ASX announcement on 17/02/2017.

MGA94 z51 Apparent AHD RL From То Li2O HOLE Northing Easting Thickness Lithology (m) (m) (m) (%) (m) (m) CASSITERITE PIT – INFILL RC DRILLING 25 31 6 1.29 Pegmatite 127 16 WLRC0002 673977 7655649 230 111 1.21 Pegmatite 194 199 5 1.37 Pegmatite 4 13 9 2.21 Pegmatite 93 9 102 1.88 Pegmatite WLRC0003 674002 7655706 236 127 148 21 1.99 Pegmatite 150 155 5 2.04 Pegmatite 23 156 179 1.51 Pegmatite 2 10 8 1.62 Pegmatite 20 30 10 1.80 Pegmatite 104 126 22 1.77 WLRC0004 673952 7655670 230 Pegmatite 164 169 5 1.62 Pegmatite 176 186 10 1.33 Pegmatite 92 7 85 2.12 Pegmatite WLRC0005 674040 7655728 239 133 167 34 2.08 Pegmatite 59 65 6 1.43 Pegmatite WLRC0008 674002 7655758 237 81 87 6 1.30 Pegmatite 117 156 39 1.85 Pegmatite 17 43 26 1.43 Pegmatite WLRC0009 674114 7655964 230 112 119 7 1.91 Pegmatite 27 46 19 1.50 Pegmatite 65 72 7 1.21 Pegmatite 90 121 31 1.82 Pegmatite WLRC0010 674017 7655814 234 122 147 25 2.20 Pegmatite 199 221 22 1.46 Pegmatite 240 8 232 1.78 Pegmatite 70 8 78 1.82 Pegmatite WLRC0011 674082 7655924 221 80 99 19 1.16 Pegmatite 116 121 5 1.40 Pegmatite WLRC0012 674029 7655871 229 10 19 9 1.37 Pegmatite 0 6 6 1.03 Pegmatite 11 19 8 1.35 Pegmatite 51 67 16 1.79 Pegmatite 82 123 55 1.81 Pegmatite 229 WLRC0012a 674031 7655871 179 191 12 1.94 Pegmatite 207 219 12 1.70 Pegmatite 229 236 7 1.60 Pegmatite 275 280 5 1.35 Pegmatite 25 6 31 1.78 Pegmatite 76 8 68 1.25 Pegmatite WLRC0013 673917 200 7655770 90 112 22 1.72 Pegmatite 139 160 21 1.53 Pegmatite

TABLE OF SIGNIFICANT INTERVALS FROM INFILL AND EXPLORATION DRILLING AT THE WODGINA PROJECT

	673889	7655721	200	36	106	70	1.79	Pegmatite
WLRC0016				114	127	13	1.82	Pegmatite
				13	73	60	1.79	Pegmatite
WLRC0017	673919	7655766	200	81	95	14	1.72	Pegmatite
				113	129	16	1.44	Pegmatite
				14	18	4	1.68	Pegmatite
				28	59	31	1.88	Pegmatite
WLRC0018	673933	7655822	200	63	81	18	1.47	Pegmatite
				124	165	41	1.68	Pegmatite
				172	197	25	1.26	Pegmatite
				24	28	4	1.35	Pegmatite
				33	74	41	1.76	Pegmatite
	672024	7655921	200	88	105	17	1.85	Pegmatite
WLRC0019	0/3934	/055821	200	112	116	4	1.39	Pegmatite
				163	180	17	1.50	Pegmatite
				188	202	14	1.18	Pegmatite
				1	50	49	1.70	Pegmatite
WLRC0020	673969	7655945	200	51	63	12	1.24	Pegmatite
				94	102	8	1.16	Pegmatite
		7655747		18	30	12	1.82	Pegmatite
WLRC0021	673866		210	52	58	6	1.23	Pegmatite
				63	82	19	1.91	Pegmatite
				121	136	15	1.85	Pegmatite
			210	29	47	18	1.06	Pegmatite
	673865			52	58	6	1.54	Pegmatite
		7655740		77	83	6	1.28	Pegmatite
WLRC0022		/055/48		86	95	9	1.51	Pegmatite
				106	126	20	1.09	Pegmatite
				188	203	15	1.80	Pegmatite
		7655795	208	25	31	6	1.20	Pegmatite
	672800			40	89	49	1.77	Pegmatite
WLRC0024	075690			108	131	23	1.58	Pegmatite
				156	176	20	1.93	Pegmatite
				2	51	49	1.52	Pegmatite
				52	60	8	1.26	Pegmatite
WLRC0025	673900	7655852	200	99	110	11	1.31	Pegmatite
				143	154	11	1.66	Pegmatite
				170	181	11	1.69	Pegmatite
WLRC0026	674042	7655726	239	119	130	11	1.48	Pegmatite
	67/052	7655049	222	2	15	13	1.18	Pegmatite
WERCOUZ7	074035	/022948	223	39	69	30	1.64	Pegmatite
	67/15/	7655061	250	110	140	30	1.48	Pegmatite
VVLNCUU28	074134	102201	250	141	177	36	1.74	Pegmatite
	67/200	7655001	252	155	162	7	1.66	Pegmatite
WLKCUU31	074209	1000001	233	173	198	25	1.85	Pegmatite

	MGAS	94 z51			То	Apparent	1:20	
HOLE	Easting	Northing (m)	(m)	From (m)	(m)	Thickness	(%)	Lithology
0.460	(m)				(,	(m)	(757	
CASS	ITERITE NORTH	EAST – EXPLORA	TION RC DRIL		100	10	2.62	Dogmatita
WLRC0033	674141	7656307	290	97	109	12	2.02	Pegmatite
				105	50	10	1.25	Pegmatite
	674144	7656204	200	116	110	2	1.55	Pegmatite
WERC0034	074144	7030304	290	110	211	58	1.10	Pegmatite
				1/10	211	58	1.75	Pegmatite
	67/172	7656280	200	220	200	5	1.01	Pegmatite
WERCOUSS	074175	7030280	250	223	254	7	1.00	Pegmatite
				157	170	, 13	1.27	Pegmatite
				197	217	33	1.74	Pegmatite
				224	217	91	2.04	Pegmatite
WLRC0036	674203	7656258	290	Including 1m (ອ <u>ຼ</u> ອງ ອຸຣຸງ1%	Li ₂ O 198 to 1	99m	regnatic
				Including 4m (@ 3.21 % @4.39%	Li ₂ O 227 to 2	231m	
				Including 1m (@4.16%	Li ₂ O 275 to 2	276m	
				158	171	13	2.03	Pegmatite
				184	316	132	1.76	Pegmatite
WLRC0037	674235	7656234	289	Including 1m (@5.19%	Li ₂ O 282 to 2	283m	5
				Including 2m @4.43% Li ₂ O 302 to 304m				
				Including 2m (
	674193	7656177		64	69	5	1.96	Pegmatite
			290	113	118	5	1.3	Pegmatite
N// DC0000				161	165	4	1.30	Pegmatite
WLRC0038				215	239	24	1.78	Pegmatite
				261	264	3	1.96	Pegmatite
				276	284	9	2.44	Pegmatite
				55	70	15	1.68	Pegmatite
W// DC0020	674244	7656207	289	171	276	105	1.67	Pegmatite
WLRC0039	674211	7656207		290	310	21	2.0	Pegmatite
				Including 2m @4.89% Li ₂ O 300 to 302m				
				51	56	5	1.24	Pegmatite
				117	118	1	1.8	Pegmatite
WLRC0040	674,117	7,656,272	290	122	126	5	1.09	Pegmatite
				151	196	45	1.67	Pegmatite
				217	220	3	1.15	Pegmatite
				69	72	3	1.47	Pegmatite
				144	176	33	1.82	Pegmatite
				191	207	17	1.5	Pegmatite
	674 140	7656 252	200	217	219	2	1.23	Pegmatite
VVLRCUU41	074,149	7,000,253	290	223	235	12	1.07	Pegmatite
				245	259	14	1.25	Pegmatite
				276	310	35	1.52	Pegmatite
				Including 1m (@4.24%	Li ₂ O 168 to 1	L69m	
WLRC0042	674,173	7,656,337	291	112	125	13	1.02	Pegmatite

				132	211	75	1.51	Pegmatite
				244	316	76	1.98	Pegmatite
				Including 2m	@4.32%	Li ₂ O 286 to 2	288m	
				Including 1m	@4.04%	Li ₂ O 298 to 2	299m	
				Including 2m	@4.58%	Li ₂ O 302 to 3	304m	
				104	111	7	1.97	Pegmatite
				152	182	30	1.55	Pegmatite
	674 202	7 656 313	200	190	212	22	1.31	Pegmatite
WENCOU+5	074,202	7,050,515	250	228	344	116	1.68	Pegmatite
				Including 1m	@4.12%	Li ₂ O 238 to 2	239m	
				Including 1m	<u>@4.20%</u>	Li ₂ O 321 to 3	322m	
				94	99	4	1.01	Pegmatite
				148	182	34	1.65	Pegmatite
				196	330	134	1.89	Pegmatite
WLRC0044	674.231	7.656.288	290	335	336	1	1.62	Pegmatite
		.,,		Including 1m (@4.18%	Li2O 159 to	160m	
				Including 1m (@4.43%	Li2O 166 to :	167m	
				Including 1m (@4.25%	Li2O 278 to 2	279m	
				Including 7m (<u>@4.34%</u>	Li2O 296 to 3	303m	D
				33	41	8	1.68	Pegmatite
				94	98	4	1.43	Pegmatite
WLRC0045	674,262	7,656,263	290	185	312	127	1.80	Pegmatite
				335	338	3	1.06	Pegmatite
				Including 1m	@4.46%	Li2O 37 to 3	8m	
				Including 1m (@4.02%	Li2O 201 to 2	202m	D
			7,656,263 290	45	55	10	1.49	Pegmatite
WLRC0046	674,262	7,656,263		102	104	2	1.12	Pegmatite
				168	170	2	1.27	Pegmatite
				1/6	187	11	1.96	Pegmatite
				37	121	84	1.67	Pegmatite
WLRC0047	674,438	7,656,467	266	135	105	30	1.29	Pegmatite
				1//	191	14	2.13	Pegmatite
				196	199	3	1.15	Pegmatite
				24	26	2 10	1.01	Pegmatite
				40	04	18	1.40	Pegmatite
	674 470		262	69	125	50	1.46	Peginalite
WLRC0048	674,470	7,656,503	263	141	154	13	1.35	Pegmatite
				160	166	6	1.04	Pegmatite
				1/4		13	1.51	Pegmatite
				Including 1m	@4.05%	6 LIZO 96 to 1	9/m	Desmostite
				59	93	34 17	1.10	Pegmatite
WLRC0049	674,420	7,656,444	272	109	167	1/	2.29	Pegmatite
	.,			101	107	0	1.19	Pegilidule
				180	202	22	1.50	Peginalile
	674 202		274	89	92	ঠ 20	1.12	Pegmatite
WLKC0050	674,393	7,656,415	2/4	110	154	58	1.5/	Pegmatite
				158	167	9	1.46	Pegmatite

1	I	I	I		1	[1	
				215	224	9	1.45		
				137	141	4	1.41	Pegmatite	
WLRC0051	674253	7656427	289	179	184	5	1.50	Pegmatite	
				208	242	34	1.55	Pegmatite	
				167	172	5	1.59	Pegmatite	
WLRC0052	674282	7656404	289	184	189	5	1.45	Pegmatite	
				227	229	2	1.21	Pegmatite	
				140	194	54	1.73	Pegmatite	
				205	231	26	1.64	Pegmatite	
WI BC0053	674224	7656399	290	279	306	27	1.95	Pegmatite	
WERCOOSS	0,1221	1030333	250	Including 3m (@4.51%	Li2O 160 to 2	163m		
				Including 1m (@4.14%	Li2O 280 to 2	281m		
				Including 1m (<u>@4.27%</u>	Li2O 297 to 2	298m		
				177	188	11	2.01	Pegmatite	
WI BC0054	674222	7656400	290	207	227	20	1.21	Pegmatite	
WERCOUS-	074222	7030400	250	235	252	17	1.77	Pegmatite	
				Including 1m (Including 1m @4.91% Li2O 242 to 243m				
		7,656,415	274	111	112	1	1.06	Pegmatite	
				117	119	2	1.04	Pegmatite	
WLRC0055				153	155	2	1.07	Pegmatite	
	674,393			160	166	6	1.06	Pegmatite	
				174	176	2	2.18	Pegmatite	
				179	181	2	1.32	Pegmatite	
				206	225	19	1.00	Pegmatite	
				261	263	2	1.01	Pegmatite	
				148	178	30	1.38	Pegmatite	
	674 272	7 656 250	289	200	211	11	1.06	Pegmatite	
WLRC0056	674,273	7,656,350		215	217	2	1.73	Pegmatite	
				247	275	28	1.46	Pegmatite	
				113	123	10	1.15	Pegmatite	
				137	193	56	1.99	Pegmatite	
				200	214	14	1.61	Pegmatite	
	674 201	7 (5 ()70	201	240	340	100	1.78	Pegmatite	
WLRC0057	674,201	7,656,370	291	Including 1m (@4.00%	Li2O 174 to 3	175m		
				Including 1m @4.31% Li2O 258 to 259m					
				Including 1m	 @4.17%	Li2O 295 to 2	296m		
				Including 2m (- @4.27%	Li2O 301 to 3	303m		
				158	159	1	1.31	Pegmatite	
				164	182	18	1.48	Pegmatite	
WLRC0058	674,200	574,200 7,656,371	291	186	200	14	1.28	Pegmatite	
				208	232	24	1.59	Pegmatite	
	1	1	1	-			-		

For further information:

Bruce Goulds Company Secretary & CFO Mineral Resources Limited T: +61 8 9329 3600 E: <u>bruce.goulds@mineralresources.com.au</u>

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Results is based on information compiled by Dr Steven Batty, who is a full time employee of Mineral Resources Limited. Dr Batty is a Member of The Australasian Institute of Geologists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. The Competent Person consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this report which relates to Mineral Resources is extracted from announcements dated 17/2/17 and 2/3/17, which are available to view on <u>www.mineralresources.com.au</u>. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

JORC Code, 2012 Edition – Table 1

Note: Parts of Table 1 relating to Exploration drilling describe recent activity to March 2017.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Deposits have been sampled by Reverse Circulation (RC) drilling. RC – Rig mounted cone splitter used, with samples falling through an inverted cone splitter, splitting the sample in 90/10 ratio. 10% off-split retained in a calico bag. 90% split residue stored on ground. All pegmatite intercepts sampled at 1m intervals plus 2m of adjacent waste sent for lab analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC – Reverse circulation drilling was carried out using a face sampling hammer and a 142mm diameter bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC – Approximate recoveries are recorded as a percentage based on visual and weight estimates of the sample. There is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Chip samples have been logged by qualified Geologists to a level of detail sufficient to support a Mineral Resource estimate, mining studies and metallurgical studies. RC – logging was carried out on a metre by metre basis and at the time of drilling. All intervals were logged. Logging is qualitative and quantitative.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No core RC – Cyclone mounted cone splitter used. RC chips were dried at 100C. All samples below approximately 4kg were totally pulverised in LM5's to nominally 85% passing a 75µm screen. The few samples generated above 4kg were crushed to <6mm and riffle split first prior to pulverisation. The measures taken to ensure the RC sampling is representative of the in situ material collected included the insertion of a duplicate sample at an incidence of 1 in 25. Commercially prepared certified reference materials (CRM) were inserted amongst the drill samples. For RC samples, no formal heterogeneity study has been carried out or nomographed. An informal analysis suggests that the sampling protocols currently in use are appropriate to the mineralisation encountered and should provide representative results. As such, samples sizes are considered appropriate.
Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• The lab QAQC protocols used for the RC drill samples included the insertion of a duplicate sample at an incidence of 1 in 20, one of three types of CRM's at an incidence of 1

Criteria	JORC Code explanation	Commentary
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 in 10, and repeats at an incidence of 1 in 10. No hand held analytical instruments were used in the field. QAQC data is assessed on import into the database and reported yearly.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections not verified. Sample data is stored using a customised Access database using semi-automated or automated data entry. Hard copies of primary data stay in the field during the exploration campaign and are brought back to the Perth office post campaign for storage. No adjustments were made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar positions were recorded using a hand held Global Positioning System (GPS). Post-drilling collar positions were recorded using a Differential GPS. The majority of holes were drilled vertically with approximately 10 drilled at -60°. The grid system is MGA Zone 51 (GDA94) for horizontal data and AHD (based on AusGeoid09) for vertical data. Topographic control is from Digital Elevation Contours (DEM) 2016 based on 1m contour data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC holes are generally based on 40m x 40m drill spacing. The data spacing and distribution is sufficient to establish geological and or grade continuity appropriate for future Mineral Resource and classifications to be applied. RC samples are composited to 1m through the mineralisation and two metres either side.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of sampling is designed to be perpendicular to the main mineralisation trends were possible. The orientation achieves unbiased sampling of all possible mineralisation and the extent to which this is known.
Sample security	The measures taken to ensure sample security.	 RC – All samples are bagged in numbered calico bags, grouped into larger tied polyweave bags, and placed in a large bulka bag with a sample submission sheet. The bulka bags are transported via freight truck to Perth, with consignment note and receipted by external laboratory (NAGROM). All sample submissions are documented and all assays are returned via email. Sample pulp splits are stored in Mineral Resources Limited (MRL) facilities.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 All recent sample data has been reviewed internally by MRL Geologists. No external audits have been carried out on the sample data.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

(Criteria listed in	the preceding section also apply to this section.)	•
Criteria Mineral tenement and land tenure status	 JORC Code explanation Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Commentary Wodgina is located wholly within Mining Licence M45/50, M45/353, M45/383 & M45/887. The tenements are wholly owned by GLOBAL ADVANCED METALS WODGINA PTY LTD (formerly TALISON WODGINA PTY LTD). The tenements are within the Karriyarra native title claim and is subject to the Land Use Agreement dated March 2001 between the Karriyarra People and Gwalia Tantalum Ltd (now Global Advanced Metals). The tenement is in good standing and no known impediments exist. The drilling is located on M45/50-I and M45/365-I held in the name of Wodgina Lithium a 100% subsidiary of MRL. M45/50-I and is not up for renewal until 2026 and M45/365-I is not up for renewal until 2030.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 MRL has carried out drilling of 107 holes between September 2016 and March 2017 for a total of 24,708m. All exploration during the current reporting period was carried out by MRL.
Geology	Deposit type, geological setting and style of mineralisation.	 The 3600-2800Ma north Pilbara basement terrane consists of a series of ovoid multiphase granitoid-gneiss domes bordered by sinuous synformal to monoclinal greenstone belts. The Wodgina Greenstone Belt is a north to northeast plunging synclinal structure 25km long and 5km wide, preserved as a roof pendant separating the Yule and Carlindi granitoid complexes. It is composed principally of interlayered mafic and ultramafic schists and amphibolite, with subordinate komatilte, clastic sediments, BIF and chert. The komatilite and metasedimentary units within the Wodgina area are tentatively correlated to the Kunagunarrina and Leilira Formations respectively. Archean volcanic activity and sedimentation was followed by the intrusion of Archean granitic batholiths with consequent deformation and metamorphism of the sequence. Late stage granitic intrusions resulted in the emplacement of simple and complex pegmatite sills and barren quartz veins. The Wodgina lithium mineralisation is hosted within a number of sub-parallel, sub-horizontal, northeast trending pegmatite intrusive bodies. The base of the massive pegmatite intrusive bodies. The base of the massive pegmatite, with an apparent dip at between 5° to 30° to the west-southwest. At this time individual pegmatites vary in strike length from approximately 200m to 400m. The thinner near surface pegmatites intrude the mafic volcanic and metasedimentary host rocks of the surrounding greenstone belt. The lithium in the Cassiterite Pit and shallower pegmatites occurs as 10 - 30 cm long grey-white spodumene crystals within medium grained pegmatites comprising primarily quartz, feldspar, spodumene and muscovite. Typically the spodumene is distributed within fine-grained quartz, feldspar, spodumene and muscovite matrix.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a 	 A summary of the exploration drilling into the Wodgina project deposit is attached.

Criteria	IORC Code explanation	Commentary
	 tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported exploration results are uncut. Reported aggregate Li₂O intercepts based on geological intervals of continuous pegmatite greater than or equal to 2m. Reported aggregate Li₂O intercept grades are a weighted average based on assay interval length.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Apparent thickness as downhole length is reported.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Plan view and typical cross sections of the Wodgina project showing drill collars is attached.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All holes related to the Wodgina drilling program are reported here.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other meaningful data to report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Exploration drilling is ongoing. As part of the main document (Plan View).