

## SIGNIFICANT COPPER ANOMALISM AT CURARA WELL

Thundelarra is pleased to announce that the recent Rotary Air Blast (RAB) drilling at Curara Well in the Doolgunna region of Western Australia has intersected significant copper, nickel and chromium anomalism. This augurs well for the project's potential to host either repetitions of the DeGrussa style copper-gold mineralisation, or alternatively Plutonic-style gold mineralisation.

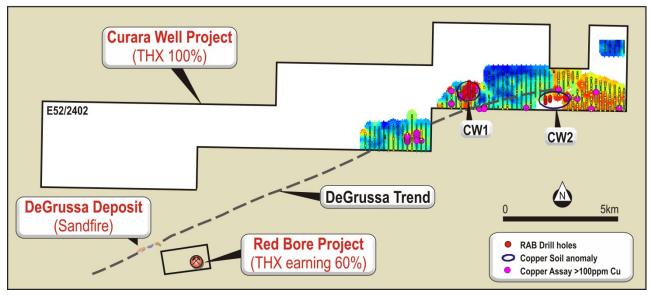



Figure 1. Doolgunna Region of WA: Curara Well and Red Bore projects.

The 5,000m RAB program aimed to test copper-in-soil anomalies and improve understanding of their possible source. It was cut short due to wet weather with only 61 holes for 2,643m completed (43m average depth per hole). Most of the holes were over the CW1 anomaly. The program will recommence when weather conditions permit and complete the testing of the CW2 anomaly.

The CW1 target is the most significant of the copper anomalies. The RAB drilling has produced significant results, with thick (up to 40m) intervals of copper mineralisation at greater than 20 times background (>700ppm up to 1,060ppm). It is important to note that although these results are from shallow depths, above the base of oxidation, visual inspection of the most significant intervals showed the presence of magnetic mineral, most probably after pyrrhotite, coincident with copper, nickel and chromium anomalism in what appears to be a mafic-ultramafic unit (Table 1).

These results confirm that the source of the CW1 soil anomaly was not a surficial concentration and as such constitutes an important target for further follow-up drilling. The anomalies are located adjacent to the Jenkins Fault zone of influence (the "DeGrussa Trend") which marks the tectonic contact between the Proterozoic Bryah Basin to the south-east and the Archaean Marymia-Plutonic Greenstone Belt to the north-west.

+61 8 9321 9680

Fax: +61 8 9321 9670

Ph:

Based on the information available to date, there are two distinct possible scenarios that could explain the presence of the mafic-ultramafic rocks intersected by the drilling:

- 1) The rocks belong to the Narracoota Formation (host to Sandfire's DeGrussa deposits), and are similar to occurrences near Gayle's Bore, and at Talisman Mining's Halloween Project, west of the Great Northern Highway. If so, they are the most north-easterly occurrence of the prospective VMS horizon identified to date along the DeGrussa Trend.
- 2) The rocks are an extension of the older Marymia-Plutonic greenstone belt which is mapped occurring immediately to the north-east on the fringes of the Curara Well Project area. This greenstone belt hosts the Plutonic Gold Mine, which has produced just under 5 million ounces since operations commenced in 1990. If this scenario proved correct, it would represent substantial potential for gold mineralisation. This possibility is supported to some extent by the intersection in hole TCWRAB040 of 43ppb gold over 4m.

An interpretation of the lithological and structural setting of the central part of the CW1 anomaly (**Figure 2**), based on RAB drilling completed to date, shows the extent of the copper anomalism and illustrates the need for further, deeper, follow-up drilling.

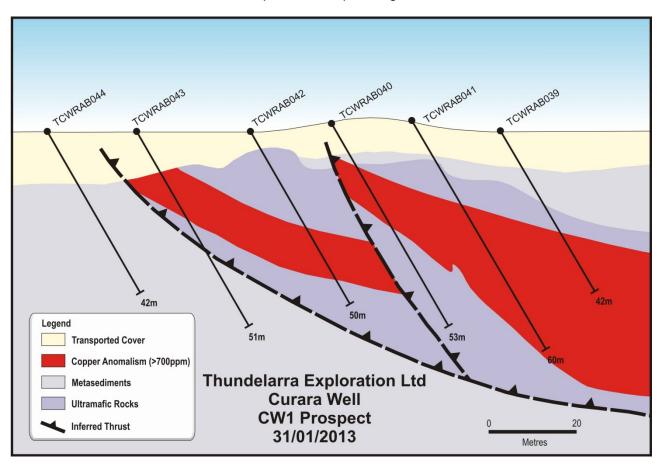



Figure 2. Interpreted geology at the CW1 Anomaly.

A proposed program of RC / Diamond drilling will help to establish the bedrock geology at depth and in turn clarify which of these two scenarios is more likely. The drilling will provide additional geological, geochemical and structural information, considered critical due to the proximity to the DeGrussa Trend. It will also test an encouraging magnetic high that sits under the CW1 anomaly (**Figure 3**). Modelling of existing VTEM magnetics data will help optimise drill targeting.

Figure 3 also shows another similar magnetic anomaly present to the north-west, where hand-held XRF readings have returned anomalous values within lag samples. Further soil geochemistry is planned over this area prior to establishing drilling targets (area marked "Planned Soil Survey").

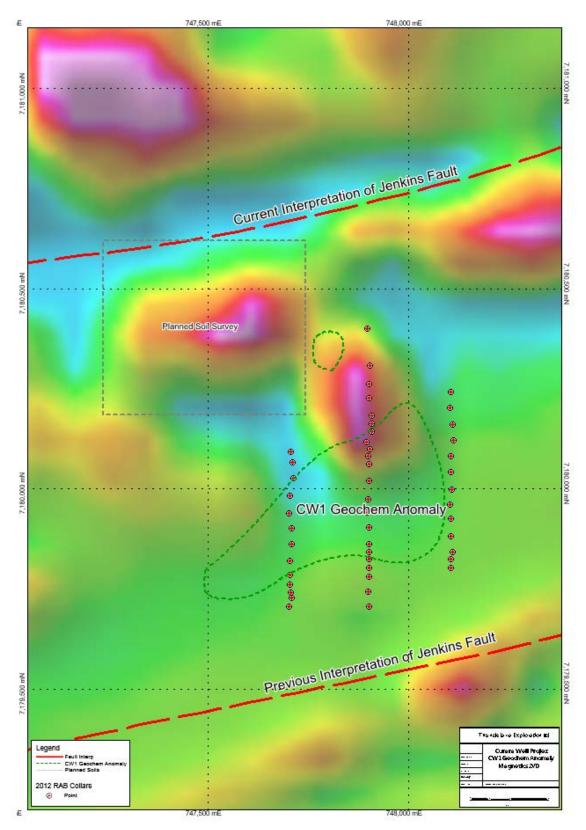



Figure 3. Magnetic image at CW1 Geochemical Anomaly, Curara Well project.

The magnetic image also illustrates how the work done to date has resulted in revisions to the previous interpretations of the inferred position of the Jenkins Fault. This has significant geological relevance as it reaffirms the possibility that the geochemical anomalies fall within the Proterozoic Bryah Basin, increasing the likelihood of the mafic-ultramafic units being part of the Narracoota Formation, and adding to the prospectivity for potential DeGrussa style copper-gold mineralisation.



Figure 4. Typical Curara Well terrain adjacent to breakaways.

For Further Information Contact:

Mr Tony Lofthouse - Chief Executive Officer
+61 8 9321 9680

THUNDELARRA EXPLORATION LTD

Issued Shares: 231.3M

ASX Codes: THX & THXOA

## **Competent Person Statement**

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon information compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and an employee of the Company. Mr Vieru has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2004 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

| Hole ID                          | Easting | Northing | Depth | Dip  | Azimuth | From | То | Interval | Cu ppm |
|----------------------------------|---------|----------|-------|------|---------|------|----|----------|--------|
| TCWRAB031                        | 747903  | 7179824  | 40m   | -60° | 180°    | 20   | 36 | 16m      | 668    |
| TCWRAB037                        | 747900  | 7179975  | 42m   | -60° | 180°    | 8    | 16 | 8m       | 843    |
| TCWRAB039                        | 747901  | 7180061  | 42m   | -60° | 180°    | 28   | 42 | 14m      | 871    |
| TCWRAB040                        | 747904  | 7180099  | 53m   | -60° | 180°    | 16   | 24 | 8m       | 1,060  |
| TCWRAB041                        | 747900  | 7180081  | 60m   | -60° | 180°    | 20   | 60 | 40m      | 732    |
| TCWRAB042                        | 747895  | 7180118  | 50m   | -60° | 180°    | 32   | 40 | 8m       | 677    |
| TCWRAB043                        | 747908  | 7180144  | 51m   | -60° | 180°    | 12   | 28 | 16m      | 801    |
| TCWRAB045                        | 747908  | 7180183  | 42m   | -60° | 180°    | 16   | 20 | 4m       | 749    |
| Lower Detection Limit: 600ppm Cu |         |          |       |      |         |      |    |          |        |

| Hole ID                           | Easting | Northing | Depth | Dip  | Azimuth | From | То | Interval | Ni ppm |
|-----------------------------------|---------|----------|-------|------|---------|------|----|----------|--------|
| TCWRAB040                         | 747904  | 7180099  | 53m   | -60° | 180°    | 20   | 51 | 31m      | 1,645  |
| TCWRAB041                         | 747900  | 7180081  | 60m   | -60° | 180°    | 32   | 56 | 24m      | 1,103  |
| TCWRAB042                         | 747895  | 7180118  | 50m   | -60° | 180°    | 32   | 45 | 13m      | 1,241  |
| TCWRAB043                         | 747908  | 7180144  | 51m   | -60° | 180°    | 24   | 32 | 8m       | 1,382  |
| Lower Detection Limit: 1000ppm Ni |         |          |       |      |         |      |    |          |        |

| Hole ID                           | Easting | Northing | Depth    | Dip     | Azimuth  | From | То | Interval | Cr ppm |
|-----------------------------------|---------|----------|----------|---------|----------|------|----|----------|--------|
| TCWRAB031                         | 747903  | 7179824  | 40m      | -60°    | 180°     | 20   | 36 | 16m      | 1,761  |
| TCWRAB034                         | 747902  | 7179843  | 54m      | -60°    | 180°     | 0    | 4  | 4m       | 1,200  |
| TCWRAB035                         | 747903  | 7179803  | 42m      | -60° 0° |          | 20   | 28 | 8m       | 1,282  |
| TCWRAB037                         | 747900  | 7179975  | 42m      | -60°    | 60° 180° |      | 16 | 4m       | 1,385  |
| TCWRAB038                         | 747903  | 7180021  | 0021 42m |         | 180°     | 4    | 8  | 4m       | 1,221  |
| TCWRAB039                         | 747901  | 7180061  | 42m      | -60°    | 180°     | 28   | 42 | 14m      | 1,377  |
| TCWRAB041                         | 747900  | 7180081  | 60m      | -60°    | 180°     | 12   | 32 | 20m      | 1,142  |
| TCWRAB042                         | 747895  | 7180118  | 50m      | -60°    | 180°     | 4    | 12 | 8m       | 1,526  |
| and                               |         |          |          |         |          | 32   | 36 | 4m       | 1,187  |
| TCWRAB043                         | 747908  | 7180144  | 51m      | -60°    | 180°     | 8    | 28 | 20m      | 1,880  |
| TCWRAB052                         | 747713  | 7180027  | 48m      | -60°    | 0°       | 12   | 20 | 8m       | 1,423  |
| TCWRAB061                         | 747708  | 7179727  | 56m      | -60°    | 0°       | 4    | 8  | 4m       | 1,053  |
| Lower Detection Limit: 1000ppm Cr |         |          |          |         |          |      |    |          |        |

Table 1. Assay results showing anomalous copper, nickel and chromium intervals from shallow RAB drilling at Curara Well. Holes without assays recorded above reported values below the lower detection limits.

| Hole No   | Easting | Northing | Azimuth | Depth | Hole No   | Easting | Northing | Azimuth | Depth |
|-----------|---------|----------|---------|-------|-----------|---------|----------|---------|-------|
| TCWRAB022 | 745211  | 7178062  | 180     | 42    | TCWRAB053 | 747705  | 7179984  | 360     | 42    |
| TCWRAB023 | 745194  | 7178062  | 180     | 42    | TCWRAB054 | 747701  | 7179939  | 360     | 42    |
| TCWRAB024 | 745197  | 7178081  | 180     | 42    | TCWRAB055 | 747708  | 7179901  | 360     | 42    |
| TCWRAB025 | 745197  | 7178099  | 180     | 42    | TCWRAB056 | 747709  | 7179861  | 360     | 42    |
| TCWRAB026 | 745254  | 7178273  | 180     | 42    | TCWRAB057 | 747705  | 7179820  | 360     | 42    |
| TCWRAB027 | 745250  | 7178239  | 180     | 42    | TCWRAB058 | 747705  | 7179784  | 360     | 42    |
| TCWRAB028 | 747902  | 7179706  | 180     | 42    | TCWRAB059 | 747706  | 7179742  | 360     | 48    |
| TCWRAB029 | 747900  | 7179744  | 180     | 42    | TCWRAB060 | 747704  | 7179761  | 360     | 42    |
| TCWRAB030 | 747902  | 7179780  | 180     | 42    | TCWRAB061 | 747708  | 7179727  | 360     | 56    |
| TCWRAB031 | 747903  | 7179824  | 180     | 40    | TCWRAB062 | 747702  | 7179706  | 360     | 41    |
| TCWRAB032 | 747902  | 7179861  | 180     | 42    | TCWRAB063 | 748106  | 7180243  | 360     | 41    |
| TCWRAB033 | 747902  | 7179903  | 180     | 42    | TCWRAB064 | 748104  | 7180203  | 360     | 41    |
| TCWRAB034 | 747902  | 7179843  | 180     | 54    | TCWRAB065 | 748110  | 7180162  | 360     | 41    |
| TCWRAB035 | 747903  | 7179803  | 360     | 42    | TCWRAB066 | 748112  | 7180122  | 360     | 41    |
| TCWRAB036 | 747898  | 7179941  | 180     | 42    | TCWRAB067 | 748107  | 7180081  | 360     | 41    |
| TCWRAB037 | 747900  | 7179975  | 180     | 42    | TCWRAB068 | 748107  | 7180042  | 360     | 41    |
| TCWRAB038 | 747903  | 7180021  | 180     | 42    | TCWRAB069 | 748108  | 7179998  | 360     | 41    |
| TCWRAB039 | 747901  | 7180061  | 180     | 42    | TCWRAB070 | 748104  | 7179962  | 360     | 44    |
| TCWRAB040 | 747904  | 7180099  | 180     | 53    | TCWRAB071 | 748107  | 7179925  | 360     | 41    |
| TCWRAB041 | 747900  | 7180081  | 180     | 60    | TCWRAB072 | 748106  | 7179882  | 360     | 41    |
| TCWRAB042 | 747895  | 7180118  | 180     | 50    | TCWRAB073 | 748111  | 7179842  | 360     | 44    |
| TCWRAB043 | 747908  | 7180144  | 180     | 51    | TCWRAB074 | 748106  | 7179802  | 360     | 42    |
| TCWRAB044 | 747909  | 7180164  | 180     | 42    | TCWRAB075 | 748107  | 7179824  | 360     | 38    |
| TCWRAB045 | 747908  | 7180183  | 180     | 42    | TCWRAB076 | 752052  | 7179701  | 360     | 51    |
| TCWRAB046 | 747902  | 7180226  | 180     | 42    | TCWRAB077 | 752062  | 7179661  | 360     | 42    |
| TCWRAB047 | 747903  | 7180263  | 180     | 42    | TCWRAB078 | 752064  | 7179623  | 360     | 42    |
| TCWRAB048 | 747904  | 7180309  | 180     | 42    | TCWRAB079 | 752062  | 7179580  | 360     | 42    |
| TCWRAB049 | 747897  | 7180401  | 180     | 42    | TCWRAB080 | 751403  | 7179760  | 360     | 42    |
| TCWRAB050 | 747706  | 7180093  | 360     | 42    | TCWRAB081 | 751402  | 7179724  | 360     | 42    |
| TCWRAB051 | 747710  | 7180066  | 360     | 42    | TCWRAB082 | 751402  | 7179683  | 360     | 42    |
| TCWRAB052 | 747713  | 7180027  | 360     | 48    |           |         |          |         |       |

Table 2. Collar coordinates and hole parameters for RAB holes drilled to date in this program. All holes drilled at  $-60^{\circ}$ .