

ZINC MINERALISATION EXTENDED AT LITTLE MOUNT ISA

Highlights:

- > Zinc mineralisation extended at Little Mount Isa
 - o 8m at 4.76% Zn from 41m to 49m in TSDRC07 (true width unknown)
 - Mineralisation now demonstrated over approximately 450m strike length
- > Potential demonstrated for replacement-type skarn mineralisation
 - Halls Creek Fault Zone exhibits potential for skarns at depth
 - o Future work programs to evaluate prospectivity at depth
 - Historical Ilmars data to be revisited in light of new understanding at Little Mount Isa and the Halls Creek Fault Zone
- > VTEM conductors tested
 - o Geophysical conductors explained by presence of graphitic schists

Sophie Downs, East Kimberley, WA

Sophie Downs is approximately 50km to the north-east of Halls Creek in the East Kimberley region of Western Australia on Thundelarra's 100%-owned exploration license EL 80/3673.

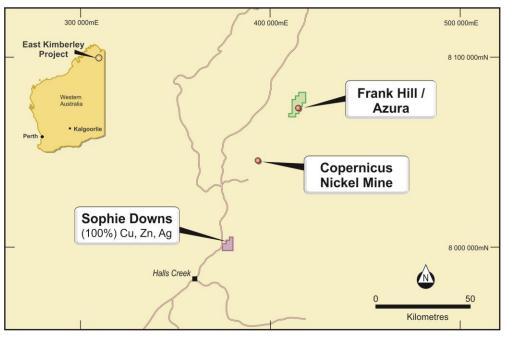


Figure 1. Sophie Downs regional location map.

Re-evaluation of historical work programs and exploration results over the project area suggested that previous interpretations that the copper-lead-zinc mineralisation at Ilmars and Little Mount Isa

Ph: +61 8 9389 6927 Fax: +61 8 9389 5593 were of VMS (volcanogenic massive sulphide) origin may be incorrect. An earlier small drill program of six RC holes for 719m (*ASX release dated 20 August 2013*) successfully tested the possibility that replacement skarn-style base metal mineralisation might exist at Little Mt Isa.

This program comprised seven Reverse Circulation drillholes for a total of 750m and followed on from the previous program. Its main aim was to test if conductors identified in earlier geophysical (VTEM) surveys were characterising the zinc mineralisation identified in the first drill program. Details of all the holes drilled in this program are provided in Table 1 below.

Hole	East	North	RL	Depth	Dip	Azimuth	Prospect	Licence
TSDRC007	377870	8000187	455m	90m	-60°	105°	Little Mount Isa	E80/3673
TSDRC008	377870	8000254	449m	132m	-60°	101°	Little Mount Isa	E80/3673
TSDRC009	377900	8000325	440m	126m	-60°	103°	Little Mount Isa	E80/3673
TSDRC010	377700	8000214	445m	72m	-60°	153°	Little Mount Isa	E80/3673
TSDRC011	377977	8000414	440m	84m	-60°	103°	Little Mount Isa	E80/3673
TSDRC012	377832	8000089	449m	96m	-60°	103°	Little Mount Isa	E80/3673
TSDRC013	377830	8000136	449m	150m	-76°	105°	Little Mount Isa	E80/3673

Table 1. Details of the holes drilled. All locations on Australian Geodetic Grid MGA94-52.

Table 2 below records the most significant intercepts from the program.

Hole No	From	То	Interval	Zn (%)	Cu (%)	Prospect
TSDRC007	41m	49m	8m	4.76		Little Mount Isa
	57m	60m	3m		0.53	
TSDRC008	85m	95m	10m	0.71		Little Mount Isa
TSDRC009	78m	88m	10m	0.74		Little Mount Isa
	99m	110m	11m	0.88		
TSDRC010	38m	45m	7m	0.35		Little Mount Isa
TSDRC012	46m	59m	13m	1.02	0.14	Little Mount Isa
TSDRC013	112m	119m	7m	1.47	0.16	Little Mount Isa

Table 2. Significant drill intercepts. See Appendix 1 for all assays.

All samples were first tested using hand-held XRF to identify zones of significant anomalism to warrant submission for assay. All laboratory assay results are presented in Appendix 1.

The previous drilling at the Little Mt Isa Prospect had intersected sulphidic calc-silicate rocks with strongly anomalous Zn-Cu-W. A tabular zone of zinc mineralisation, dipping steeply to the west, was outlined over a strike length of approximately 350m. The purpose of this program was to follow up on those previous high grade zinc results (*Holes TSDRC005 and TSDRC006 in ASX release of 20 August 2013*) and to ascertain if conductors identified in previous VTEM geophysical surveys were in any way associated with, or indicators of, the mineralisation in those holes.

Consequently the drillholes were located in order to test the interpreted position of the conductors and to establish whether or not they were representative of sulphide mineralisation.

The general stratigraphy intersected consisted of various schists, of which the most relevant was a black carbonaceous-graphitic schist in the footwall, followed by the mineralised sequence of

interlayered carbonates and sulphidic calc-silicate rocks which gives way to less sulphidic calcsilicates and more massive carbonate rocks. Quartz and carbonate veining feature prominently in proximity to the mineralised zone.

Zinc mineralisation is mostly present as sphalerite where fresh. Given that sphalerite is not conductive and that carbonaceous graphitic schists are, the conclusion is that the conductors inferred from the earlier geophysical work are explained by the graphitic schist (Figure 2).

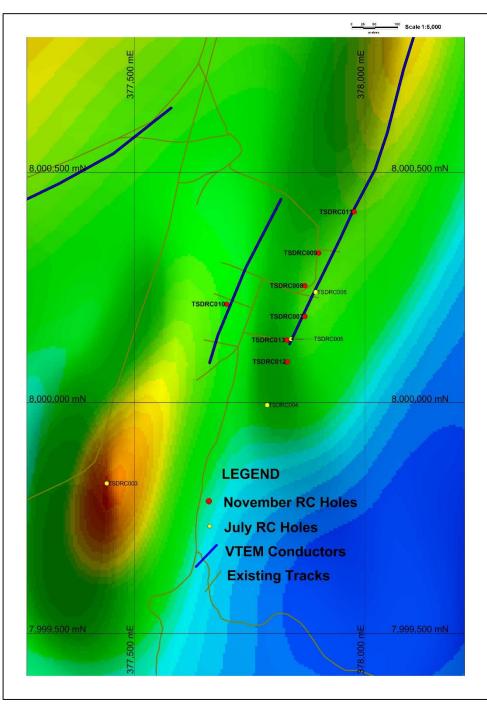


Figure 2. Little Mount Isa prospect: prospect location map showing drill collar locations on RTP Magnetic Image. Position of interpreted conductors also shown.

TSDRC007 was drilled intermediate between earlier holes TSDRC005 and 006 to test for continuity of relatively high grade zinc mineralisation between these two holes. High grade zinc mineralisation was intersected between 41m and 49m (8m at 4.76% Zn, true width unknown), confirming the continuity (Table 2 and Appendix 1). The exact nature of the zinc mineralisation is not yet clear from the information collected to date; it may in part be supergene (smithsonite) as the amount of sphalerite observed in this interval is not consistent with the high zinc grades.

TSDRC008 was targeted to intersect the mineralised horizon down dip from TSDRC006. The mineralised horizon was successfully intersected between 85m and 95m down hole but the interval reported lower zinc grades (10m @ 0.71% Zn; true width not known).

TSDRC009 was drilled to the north along strike from TSDRC006 and intersected two wide zones of relatively low grade mineralisation (10m @ 0.74% Zn from 78m to 88m; and 11m a @ 0.88% Zn from 99m to 110m down hole. True widths not known).

TSDRC010 was drilled further north along strike of the mineralised zone. It intersected a narrow zone of low grade zinc mineralisation (7m @ 0.35% Zn between 38 and 45m). The true width is probably less, as the hole was drilled oblique to the mineralised zone.

TSDRC011 targeted another EM conductor to the west of Little Mt Isa (Figure 2). The hole was abandoned at 72m after drilling through a sequence of pyritic and moderately graphitic shales which adequately explain the EM anomaly. A number of zones of quartz veining were intersected, but no significant mineralisation was recorded.

TSDRC012 was drilled along strike to the south of TSDRC005 to close off or extend the high grade zinc mineralisation intersected in TSDRC005. The hole intersected a broad zone of low grade mineralisation (13m @ 1.02% Zn between 46m and 59m: true width unknown).

TSDRC013 was drilled to provide a down dip intersection of the high grade zone intersected in TSDRC005. It intersected the mineralised zone approximately 60m down dip from TSDRC005. Low grade zinc mineralisation was encountered from 112 to 126m down hole (14m at 1.02% Zn; including 7m @ 1.47% Zn from 112m and 3m at 2.54% Zn from 112m. True widths not known).

Interpretation

This drill program successfully outlined a tabular steeply west-dipping zone of zinc mineralisation with minor copper and tungsten, which is consistent with the Little Mt Isa gossan outcrop. Apart from TSDRC007, zinc intercepts were generally of sub-economic grades. The VTEM conductors were explained by the presence of graphitic schists. These, combined with the fact that the main zinc sulphide, sphalerite, is not conductive, demonstrate that EM is not an appropriate exploration tool for the prospect, based on the nature of the mineralisation encountered to date.

Zinc mineralisation is hosted by a distinctly sulphidic calc-silicate unit in a sequence of laminated calc-silicates and carbonates. Abundant quartz and carbonate veining is present in and adjacent to the zone of mineralisation, suggesting hydrothermal processes may have been involved in its formation. Tectonic remobilisation along the reverse fault system that is the Halls Creek Fault Zone remains another explanation.

Work to date has explained the VTEM conductors but has not yet eliminated the theoretical possibility that the zinc mineralisation may exist deeper within the Halls Creek Fault Zone as part of a system of replacement skarn-style mineralisation (Figure 3).

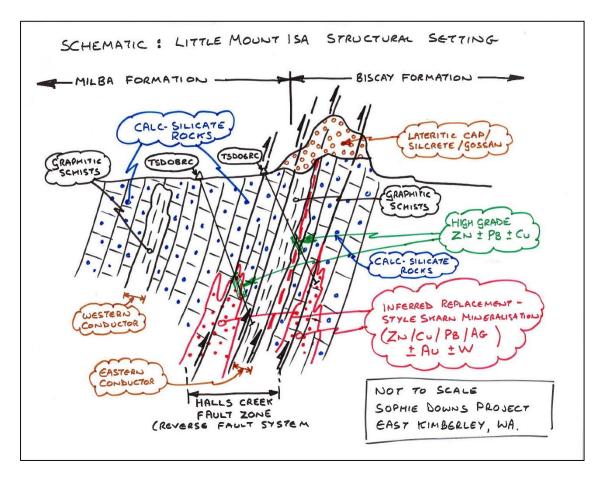


Figure 3. Little Mount Isa Prospect: schematic illustration of the interpreted structural setting and the possible position of replacement-style skarn mineralisation for future drill testing.

Future drilling should target the potential for small high grade shoots of mineralisation within the Little Mt Isa zone, plus the possibility that replacement-style skarn mineralisation may be present at depth.

For Further Information Contact: Mr Tony Lofthouse - Chief Executive Officer +61 8 9389 6927

THUNDELARRA LIMITED			
Issued Shares:	258.8M		
ASX Codes:	ТНХ		

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears. Appendix 1: Laboratory assay results. Assay methods: ICP-OES and ICP-MS after four-acid digest. Holes and intervals not recorded below were not sampled and so not submitted for assay.

							Assay F	Results (ppm))		
Hole No	From (m)	To (m)	Width (m)	Copper	Lead	Zinc	Zn	Bismuth	Tin	Tungsten	Moly
	(11)	(111)	(111)	Cu	Pb	Zn	%	Bi	Sn	w	Мо
TSDRC007	40	41	1	2,924	71	6,466		2	2	13	4
TSDRC007	41	42	1	1,208	248	38,200	5.11	8	1	10	4
TSDRC007	42	43	1	102	292	72,232	9.45	0	0	1	4
TSDRC007	43	44	1	2,569	5,720	48,877	6.22	2	2	5	77
TSDRC007	44	45	1	4,177	5,137	34,001	4.23	2	3	4	64
TSDRC007	45	46	1	3,389	3,290	20,725	2.74	5	3	3	101
TSDRC007	46	47	1	2,636	3,471	29,364	3.81	7	4	4	169
TSDRC007	47	48	1	2,824	2,153	26,648	3.31	10	2	3	105
TSDRC007	48	49	1	2,024 5,061	2,455	25,476	3.17	4	4	5	72
TSDRC007	40	50	1	3,382	2,433 845	23,470 9,897	5.17	2	5	9	38
TSDRC007	50	51	1	3,091	548	4,200		3	8	8	29
TSDRC007	51	52	1	2,690	4,525	6,304		6	7	15	35
TSDRC007	52	53	1	1,654	1,205	4,919		7	7	16	16
TSDRC007	53	54	1	2,429	1,929	5,973		3	11	10	36
TSDRC007	54	55	1	2,650	532	1,561		9	16	8	55
TSDRC007	55	56	1	1,278	187	3,907		3	6	4	7
TSDRC007	56	57	1	2,487	220	2,965		3	4	3	15
TSDRC007	57	58	1	5,073	441	5,398		8	7	7	53
TSDRC007	58	59	1	5,077	268	1,723		4	10	8	35
TSDRC007	59	60	1	5,814	141	1,906		2	12	7	22
TSDRC007	60	61	1	2,697	210	3,168		3	6	6	24
TSDRC007	61	62	1	3,074	84	2,666		2	8	15	26
TSDRC007	62	63	1	2,768	123	4,082		4	6	18	60
TSDRC007	63	64	1	2,089	42	1,652		1	4	5	13
TSDRC007	64	65	1	3,411	54	3,538		2	5	8	17
TSDRC007	65	66	1	2,696	52	3,670		3	4	7	9
TSDRC007	66	67	1	1,867	32	1,771		1	7	10	72
TSDRC008	85	86	1	656	232	8,382		2	1	2	30
TSDRC008	86	87	1	1,157	880	11,191	1.54	21	1	1	36
	80 87			305			1.54				
TSDRC008		88	1		85	1,598	2.02	1	1	0	4
TSDRC008	88	89	1	1,028	174	16,096	2.02	4	3	4	31
TSDRC008	89	90	1	2,847	249	6,069		5	14	6	41
TSDRC008	90	91	1	2,156	687	9,344		9	14	7	100
TSDRC008	91	92	1	2,588	334	4,803		4	9	5	67
TSDRC008	92	93	1	1,733	426	4,226		7	15	5	36
TSDRC008	93	94	1	3,455	570	4,982		7	29	9	46
TSDRC008	94	95	1	822	668	4,763		6	16	5	54
TSDRC009	78	79	1	2,179	1,614	8,831		4	2	3	18
TSDRC009	79	80	1	1,281	565	10,637	1.42	6	3	1	14
TSDRC009	80	81	1	471	231	2,990		2	2	6	8
TSDRC009	81	82	1	2,032	617	4,860		1	4	6	41
TSDRC009	82	83	1	1,352	464	13,751	1.63	7	3	6	12
TSDRC009	83	84	1	, 787	243	7,507		3	4	4	5
TSDRC009	84	85	1	907	629	5,017		3	2	2	6
TSDRC009	85	86	1	756	540	3,053		4	6	5	12
TSDRC009	86	87	1	1,232	648	8,304		2	6	5	18
TSDRC009	87	88	1	1,232	224	8,988		1	3	7	10
TSDRC009	87 99	88 100			224 925		1.16	1 7	2	6	6
			1	1,452		10,021	1.10				
TSDRC009	100	101	1	964	1,503	9,476	4.5	2	3	5	8
TSDRC009	101	102	1	4,272	3,546	15,398	1.8	3	8	6	30
TSDRC009	102	103	1	1,332	479	3,342		3	3	2	23
TSDRC009	103	104	1	772	996	10,312	1.24	14	2	4	17
TSDRC009	104	105	1	936	257	6,684		5	2	4	21
TSDRC009	105	106	1	706	842	8,708		35	1	3	24

							Assay R	esults (ppm)		
Hole No	From	То	Width	Copper	Lead	Zinc	Zn	Bismuth	Tin	Tungsten	Moly
	(m)	(m)	(m)	Cu	Pb	Zn	%	Bi	Sn	W	Mo
TSDRC009	106	107	1	1,625	372	6,497	70	8	1	5	10
TSDRC009	100	108	1	2,523	500	8,085		8	1	5	10
TSDRC009	108	100	1	1,038	374	6,680		6	1	28	7
TSDRC009	100	110	1	1,262	470	11,065	1.29	16	2	3	, 7
TSDRC009	110	111	1	695	124	4,725	1.25	4	3	4	7
TSDRC009	38	39	1	2,592	61	3,894		4	1	18	20
TSDRC010	39	40	1	712	76	1,000		0	1	13	4
TSDRC010	40	40	1	472	60	601		0	1	3	3
TSDRC010	40 41	42	1	168	64	394		0	1	1	1
TSDRC010	41	42	1	233	998	1,528		3	1	3	3
TSDRC010	42	43 44	1	233 1,897	432	9,683		2	1	4	14
TSDRC010	43 44	44 45	1	1,897	432 659	9,083 7,242		2	2	4	42
							1.01				
TSDRC012	46	47	1	1,052	2,231	15,985	1.91	5	2	2	59
TSDRC012	47	48	1	1,911	1,198	10,385	1.43	13	1	3	20
TSDRC012	48	49 50	1	1,888	1,355	6,214		5	1	2	19
TSDRC012	49	50	1	1,455	1,268	7,536		2	1	6	8
TSDRC012	50	51	1	1,617	1,003	6,634		8	1	3	15
TSDRC012	51	52	1	2,564	1,202	9,059		23	1	3	51
TSDRC012	52	53	1	1,519	581	6,829		6	1	3	29
TSDRC012	53	54	1	1,281	1,613	11,824	1.57	9	2	4	32
TSDRC012	54	55	1	623	796	5,289		2	1	5	11
TSDRC012	55	56	1	682	872	11,084	1.38	1	2	7	9
TSDRC012	56	57	1	871	1,751	14,262	1.87	1	2	7	14
TSDRC012	57	58	1	2,034	1,491	17,097	2.15	2	2	6	16
TSDRC012	58	59	1	525	763	10,278	1.25	2	2	6	15
TSDRC013	111	112	1	185	80	255		1	1	2	3
TSDRC013	112	113	1	1,443	4,092	18,927	2.27	1	2	7	30
TSDRC013	113	114	1	3,197	4,731	22,910	2.86	11	2	6	88
TSDRC013	114	115	1	1,428	4,714	21,116	2.5	10	3	12	43
TSDRC013	115	116	1	1,779	1,372	7,195		5	4	8	18
TSDRC013	116	117	1	1,195	575	12,948	1.67	3	7	14	40
TSDRC013	117	118	1	1,513	231	9,326		1	4	10	67
TSDRC013	118	119	1	905	329	10,290	1.19	2	3	18	35
TSDRC013	119	120	1	611	111	2,871		1	4	11	60
TSDRC013	120	121	1	144	78	396		7	1	2	8
TSDRC013	121	122	1	4,519	548	8,591		4	6	12	71
TSDRC013	122	123	1	2,769	209	5,123		1	5	5	26
TSDRC013	123	124	1	1,605	167	3,205		1	5	5	27
TSDRC013	124	125	1	1,410	107	5,393		2	5	5	40
TSDRC013	125	126	1	2,190	628	13,950	1.64	15	3	4	69
TSDRC013	126	127	1	1,801	117	3,891		2	5	9	101
TSDRC013	127	128	1	1,171	132	2,489		1	5	7	76
TSDRC013	128	129	1	1,012	189	2,185		5	4	4	52
TSDRC013	129	130	1	850	72	1,832		2	5	5	35
TSDRC013	130	131	1	777	45	2,055		1	4	5	32
TSDRC013	131	132	1	758	87	1,908		1	4	4	44
TSDRC013	132	133	1	1,717	103	3,577		3	5	3	57
TSDRC013	133	134	1	1,092	54	8,375		2	4	4	41
TSDRC013	134	135	1	1,557	86	1,014		3	6	7	27
TSDRC013	135	136	1	1,407	128	2,740		6	6	5	50
TSDRC013	136	137	1	968	92	4,170		3	6	4	59
TSDRC013	137	138	1	926	1,174	9,666		38	5	3	21
TSDRC013	138	139	1	1,190	67	2,810		1	3	6	10

Note: Initial Zn assays of > 10,000ppm were re-assayed using ore grade procedures. These use a more specific acid digest that targets ore minerals and not gangue, so delivering more accurate and reliable assays that are appropriate and relevant for higher grade samples. The resultant assay results are those reported in the "Zn %" column.

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed 	 Drill chips from each metre interval were examined visually and logged by the geologist. Any evidence of alteration or the presence of mineralisation was noted on the drill logs and all intervals were tested by hand-held XRF for metal content. Intervals reporting metal concentrations were bagged and numbered for laboratory analysis. Representative samples were obtained by riffle splitting all dry material recovered from each metre drill interval. Wet samples were spear sampled (see below). Every 20 to 25 samples submitted to the laboratory include at least one duplicate and one blank sample. The Delta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and	All seven holes were Reverse Circulation holes drilled by a truck-mounted Schramm T685W RC rig with booster and auxiliary.
Drill sample recovery	 if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. 	 Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Where moisture was encountered the sample recovery was still excellent, estimated at >80%.
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Samples were collected through a cyclone and split using a rig-mounted riffle splitter. Every 20 to 25 samples submitted to the laboratory will include at least one duplicate and one blank sample. The Delta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• No evidence has been observed of a relationship between sample recovery and grade. The excellent sample recoveries obtained preclude any assumption of grain size bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant 	 Drill chips are examined visually by the site geologist who classifies the lithologies and any mineralisation or alteration observed and records all data on the drill log. Representative chips are retained in chip trays for each metre interval drilled. It is not standard practice to photograph each interval but sections exhibiting characteristics of particular interest or geological relevance are photographed. The entire length of each drillhole is logged and evaluated.
Sub-sampling	intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken	No core drilling was carried out.
techniques and sample preparation	all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	• Samples were collected through a cyclone and split using a rig-mounted riffle splitter. The majority of the samples obtained were sufficiently dry for this process to be effective.

	1	
		Material too moist for effective riffle splitting was sampled
		using a 4cm diameter spear. Each such sample submitted to
		the laboratory comprised three spear samples taken from
		different directions into the material for each metre interval.
	 For all sample types, the nature, quality and 	The sample preparation techniques are well-established
	appropriateness of the sample preparation technique.	standard industry best practice techniques. Drill chips are
		dried, crushed and pulverised (whole sample) to 85% of the
		sample passing -75µm grind size.
	Quality control procedures adopted for all sub-sampling	• Field QC procedures include using certified reference
	stages to maximise representivity of samples.	materials as assay standards. Also every 20 to 25 samples
		submitted to the laboratory will include at least one duplicate
		and one blank sample.
	Measures taken to ensure that the sampling is	• Evaluation of the standards, blanks and duplicate samples
	representative of the in situ material collected, including for	assays has fallen within acceptable limits of variability.
	instance results for field duplicate/second-half sampling.	,,-
	Whether sample sizes are appropriate to the grain size of	• The size of samples taken is consistent with industry
	the material being sampled.	standard best practice and is considered appropriate for the
	the material being sampled.	style(s) of mineralisation being sought.
Quality of	. The network evolution and encountrationance of the economics	
Quality of	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	The assay techniques used for these assays are internetional standard and can be considered total. Samples
assay data	and laboratory procedures used and whether the technique is	international standard and can be considered total. Samples
and	considered partial or total.	were dried, crushed and pulverised to 85% passing -75µm and
laboratory		assayed for base metals using ICP-MS or ICP-OES following a
tests		four-acid digest of a 25g charge.
	 For geophysical tools, spectrometers, handheld XRF 	• The handheld XRF equipment used is an Olympus Delta XRF
	instruments, etc, the parameters used in determining the	Analyser Thundelarra follows the manufacturer's
	analysis including instrument make and model, reading times,	recommended calibration protocols and usage practices but
	calibrations factors applied and their derivation, etc.	does not consider XRF readings sufficiently robust for public
		reporting. Thundelarra uses the handheld XRF data as an
		indicator to support the selection of intervals for submission
		to laboratories for formal assay.
	Nature of quality control procedures adopted (eg	• The laboratory that carried out the assays is ISO certified
	standards, blanks, duplicates, external laboratory checks) and	and conducts its own internal QA/QC processes in addition to
	whether acceptable levels of accuracy (ie lack of bias) and	the QA/QC implemented by Thundelarra in the course of its
	precision have been established.	sample submission procedures. Evaluation of the relevant
		data indicates satisfactory performance of the field sampling
		protocols in place and of the assay laboratory.
Verification	The verification of significant intersections by either	All significant intersections are calculated and verified on
of sampling	independent or alternative company personnel.	screen and are reviewed by the CEO prior to reporting.
and assaying	The use of twinned holes.	 The program included no twin holes.
and assaying	 Documentation of primary data, data entry procedures, 	 Data is collected and recorded initially on hand-written
	data verification, data storage (physical and electronic)	logs with summary data subsequently transcribed in the field
	protocols.	to electronic files that are then copied to head office.
	Discuss any adjustment to assay data.	No adjustment to assay data has been needed.
Location of	• Accuracy and quality of surveys used to locate drill holes	Collar locations were located and recorded using hand-held
data points	(collar and down-hole surveys), trenches, mine workings and	GPS (Garmin 62S model) with a typical accuracy of ±5m.
	other locations used in Mineral Resource estimation.	Down-hole surveys are carried out on holes exceeding 100m
		length with readings taken every 50m.
	 Specification of the grid system used. 	• The map projection applicable to the area is Australian
		Geodetic MGA94, Zone 52.
	Quality and adequacy of topographic control.	• Topographic control is based on standard industry practice
		of using the GPS readings. Local topography is relatively flat.
		At this early stage of exploration detailed altimetry is not
		warranted.
Data spacing	Data spacing for reporting of Exploration Results.	Drill hole collars were located and oriented so as to deliver
and		maximum relevant geological information to allow the
distribution		geological model being tested to be assessed effectively.
	• Whether the data spacing and distribution is sufficient to	These drillholes are part of an early-stage exploration
	establish the degree of geological and grade continuity	program in the Sophie Downs Project area to help prioritise
	appropriate for the Mineral Resource and Ore Reserve	future targets. There are not yet sufficient data for any
		assessment of a Mineral Resource or Ore Reserve.
	estimation procedure(s) and classifications applied.	
Orientation	Whether sample compositing has been applied. Whather the evidentation of complian achieves unbiased	Samples were not composited. Given the early stage of this exploration it is not yet
	Whether the orientation of sampling achieves unbiased approximately achieves and the output to which this is	• Given the early stage of this exploration it is not yet
of data in	sampling of possible structures and the extent to which this is	possible to confirm the exact orientation of the structures and
relation to	known, considering the deposit type.	targets modelled for testing. Drillholes are positioned in

geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	order to test the interpretation of the data to hand but the results of the drilling are likely to lead to re-interpretation. • The exploration is still at too early a stage of progress to allow any conclusion with regard to the possibility of sampling bias having been introduced.
Sample security	• The measures taken to ensure sample security.	• Samples are collected, transported and stored by Company personnel to secure locked storage at Pine Creek until delivered by Company personnel to the laboratory for assay.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Internal reviews are carried out regularly. However, to date insufficient data has been collected and the prospects are not sufficiently advanced to warrant or necessitate a full external audit or review.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Sophie Downs project comprises 1 exploration licence comprising 9 blocks (E80/3673), wholly controlled by THX. The project is located in the Sophie Downs and Alice Downs pastoral leases in the East Kimberley. The licences are in good standing and there are no known impediments to obtaining a licence to operate.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Regional exploration was carried out in the past by a number of companies, including Pickland Mathers International, Kennecott, Newmont, Asarco, BP Minerals, Billiton Australia, Anglo Australian Resources, and Lachlan Resources. Most of the past work was undertaken at the Ilmars prospect where a small resources was estimated (Sanders, 1995) in pre-JORC times (so it is not repeated here). In the Little Mount Isa area just one diamond hole was drilled by Pickland Mathers International in 1968. The hole reported mineralisation of similar nature to that reported by THX: low grade zinc mineralisation with anomalous copper and lead values over a reported down hole interval of 25m (true width was not recorded and is not known).The mineralisation is hosted by siliceous rocks located at the contact between graphitic shales and massive limestone.
Geology	• Deposit type, geological setting and style of mineralisation.	• Recent exploration carried out by THX, including RC drilling in July 2013 (<i>ASX release dated 20 August 2013</i>), intersected massive sulphides with high grade zinc. THX has advanced a possible replacement-type skarn model hosted by calc-silicate rocks within the Halls Creek Fault Zone. Mineralisation is tectonically remobilised and consists of pyrite, sphalerite, chalcopyrite and galena.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• An explanation of the interpreted significance of the results reported herein in the context of the exploration models being tested is provided in the body of this report. Full assay results and all details of the collar locations and technical parameters of each hole drilled are presented in Appendix 1 and in Table 1 respectively.

	• If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All relevant information has been provided in this report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. 	 No cut-off grades have been used in the evaluation of the assay results of samples from holes drilled in this program.
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 Aggregate intercepts reported as straight arithmetic averages. eg Hole TSDRC07 reports 8m at 4.76% Zn from 41m, calculated as the sum of the individual 1m grades divided by the total interval length: [5.11+9.45+6.22+4.23+2.74+3.81+3.31+3.17]/[49-41] = [38.04]/[8] = 4.76%
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent values have been reported.
Relationship between mineralisation widths and	• These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The exploration of the targets reported herein is still at a relatively early stage and insufficient data points exist yet to allow these relationships to be reported with any certainty.
intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	• All intercepts are reported as down hole intercepts and true width is unknown. Where relevant in this report the abbreviations "twu" – for "true width unknown" – is used.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views. 	 Drill collar locations: refer to Figure 2. A summary of significant drill intercepts is presented in Table 2. To date, insufficient drilling has been carried out at each of the various targets being tested to support compilation of sections that would be geologically meaningful and/or instructive.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• All exploration results from this drill program are reported herein.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• The exploration reported herein is still at an early stage. As additional follow-up exploration is planned and executed, relevant information will be announced to provide context to such programs.
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	• The information obtained from this year's exploration will be assessed and programs of work for the new field season will be prepared, recognising the Company's cash balance in the context of types of work that can be funded. Follow-up drilling at this prospect is the Company's aim.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	• Future work programs have not yet been finalised. Where possible, and where sufficient technical information exists, the location of interpreted zones of potential mineralisation have been shown in the figures in this report.

---00000----