

ASX/Media Announcement

3 February 2015

ENCOURAGING RESULTS AT OX-EYED HERRING PROSPECT

Highlights:

> Further significant copper mineralisation at Ox-Eyed Herring

- o 8m at 2.71% Cu from 112m to 120m in TAL136RC (true width unknown: "twu")
 - including 5m at 4.23% Cu and 1.07% Bi (bismuth) from 113m
 - including 2m at 6.86% Cu and 1.69% Bi from 115m

> Additional sheeted copper mineralisation at Ox-Eyed Herring

- o 5m at 0.68% Cu from 143m to 148m in TAL126RC (twu)
 - including 2*m at 1.18% Cu* from 144m
- o 6m at 0.31% Cu from 123m to 129m in TAL136RC (twu)
- Late stage alkaline granite proposed as potential source to be tested
- > Highly anomalous tungsten mineralisation continues at Nipper
 - o 6m at 0.16% Cu and 1,778ppm (0.18%) W from 60m to 66m in TAL137RC (twu)

Program Overview: Allamber Project, Pine Creek, NT

Allamber is located approximately 180km south-east of Darwin (Figure 1). The project comprises nine granted exploration licences, all of which are controlled 100% by Thundelarra or its wholly-owned subsidiary Element 92 Pty Limited.

A program comprising twenty-one Reverse Circulation drillholes, for a total advance of 3,482m, started in October 2014 and was completed in late November 2014. It was designed to test seven prospects within the Allamber Project area. Holes were drilled at the Swamp Donkey, Hatrick, Nipper, Ox-Eyed Herring, North Brumby, Sulphur Hill and Cliff South prospects (see Figure 2).

Overall the program was a success, allowing an assessment of the economic potential of several of the Allamber prospects to be made. The continuing development of the understanding of the Ox-Eyed Herring / Tarpon prospect areas is of some significance and these areas in particular warrant detailed follow-up in future work programs. The geophysical data still awaited from completed downhole surveys will help to guide the siting of subsequent drilling. The high grade copper intercepts in hole TAL136RC (5m at 4.23% Cu) are particularly encouraging.

The two holes at Cliff South could not be collared in the ideal locations and consequently further work to test properly the zone below the base of oxidation is still needed.

Allamber continues to offer significant exploration potential, particularly at the Ox-Eyed Herring and Tarpon prospect areas, and these will be the subject of further work programs in 2015.

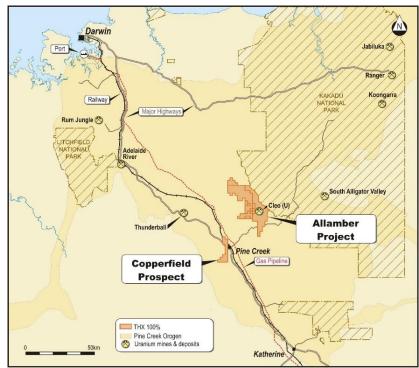


Figure 1. Regional map showing Allamber Project area and infrastructure.

Hole	East	North	RL	Depth	Dip	Azimuth	Prospect	Licence
TAL119RC	815492	8510985	102	100m	-60°	267°	Swamp Donkey	EL24549
TAL120RC	814408	8510956	76	100m	-60°	267°	Swamp Donkey	EL24549
TAL121RC	812255	8510986	100	75m	-60°	267°	Swamp Donkey	EL24549
TAL122RC	811993	8510977	95	60m	-60°	267°	Swamp Donkey	EL24549
TAL123RC	814499	8510568	105	30m	-90°	000°	Swamp Donkey	EL24549
TAL124RC	814532	8510611	101	90m	-60°	227°	Swamp Donkey	EL24549
TAL125RC	824243	8498558	173	96m	-90°	000°	Sulphur Hill	EL23506
TAL126RC	822914	8497926	134	156m	-70°	267°	Ox-Eyed Herring	EL23506
TAL127RC	821231	8500984	151	156m	-60°	067°	Nipper	EL23506
TAL128RC	823430	8498525	146	72m	-60°	182°	North Tarpon	EL10043
TAL129RC	821399	8500655	163	198m	-60°	057°	Nipper	EL23506
TAL130RC	822922	8499920	144	360m	-60°	177°	North Brumby	EL10043
TAL131RC	821283	8500840	161	198m	-60°	057°	Nipper	EL23506
TAL132RC	821847	8512015	103	246m	-60°	267°	Hatrick	EL24549
TAL133RC	822009	8511912	95	198m	-60°	267°	Hatrick	EL24549
TAL134RC	821912	8511962	93	198m	-60°	267°	Hatrick	EL24549
TAL135RC	821566	8512119	110	276m	-60°	287°	Hatrick	EL24549
TAL136RC	822774	8497937	138	282m	-80°	177°	Ox-Eyed Herring	EL23506
TAL137RC	821359	8500736	163	91m	-60°	057°	Nipper	EL23506
TAL138RC	178290	8497598	111	300m	-60°	297°	Cliff South	EL24549
TAL139RC	178274	8497676	115	200m	-60°	300°	Cliff South	EL24549

Table 1. Details of the holes drilled. All locations are in Australian Geodetic Grid Zone MGA94-52, except for TAL138RC and TAL139RC which are in zone MGA94-53.

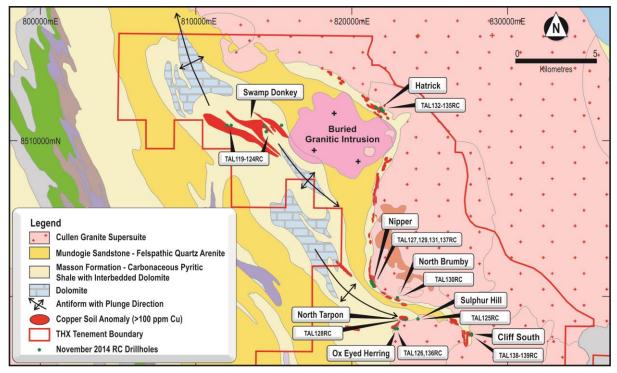


Figure 2. Allamber Project area showing prospect locations and drillhole collars from recent drill program.

All samples were first tested using hand-held XRF to identify zones of significant anomalism that warranted submission for assay. Full laboratory assay results are presented in Appendix 1.

The most significant interce	ots from the program	hare tabulated below.
The most significant interve	pis nom inc program	

Hole No	From	То	Interval	Cu (%)	W (%)	Bi (%)	U (ppm)	Prospect
TAL126RC	126m	128m	2m	0.57	0.09			Ox-Eyed Herring
TAL126RC	143m	148m	5m	0.68				
incl.	144m	146m	2m	1.18				
TAL129RC	50m	67m	17m	0.35	0.03			Nipper
TAL135RC	204m	207m	3m	1.56				Hatrick
TAL136RC	112m	120m	8m	2.71		0.67		Ox-Eyed Herring
incl.	113m	118m	5m	4.23		1.07		
incl.	115m	117m	2m	6.86		1.69		
TAL136RC	123m	129m	6m	0.31				
TAL137RC	52m	63m	11m	0.44	0.06	0.02		Nipper
incl.	53m	56m	3m	1.06	0.04	0.05		
and	60m	66m	6m	0.16	0.18			
TAL138RC	150m	156m	6m	0.14				Cliff South
	255m	257m	2m	0.03			437	
	283m	286m	3m	0.05			129	

Table 2. Significant drill intercepts. See Appendix 1 for all assays.

Six holes (TAL119-124RC) were drilled at **Swamp Donkey** to test anomalous copper, zinc and lead values recorded in regional soil sampling previously carried out by CRA. A recent new structural interpretation, tested by several auger lines, had confirmed weak copper anomalism. This drill program intersected extensive hornfels sequences with limited carbonatic layers.

Although no granitic rocks were intersected, the strong contact metamorphosed metasediments confirmed the presence of intrusive rocks at shallow depth. A buried granitic intrusion was interpreted to exist between the Swamp Donkey and Hatrick prospects (refer Figure 2) and this is consistent with the geology encountered in these six holes. Pyrite and pyrrhotite are the main sulphides, with traces of chalcopyrite also present.

Figure 3. Swamp Donkey prospect. View east towards TAL119RC.

The highest copper grades from the samples assayed were 1,538ppm Cu between 32-34m in TAL121RC and 1,612ppm Cu between 14-16m in TAL122RC. Copper anomalism is associated with tungsten values up to 2,297ppm in TAL121RC between 50-51m.

Holes TAL123RC and TAL124RC tested the potential for tin/tungsten recorded in surface samples but recorded no anomalism.

The drilling over the Swamp Donkey area has confirmed the in situ base metal anomalism, but has not identified any immediate potential for economic mineralisation, nor any clear targets that warrant further follow-up drill testing at this stage.

The **Sulphur Hill** prospect was tested with one short hole (TAL125RC) located on the top of the silicified and oxidised granite. Soil sampling over the hill has delineated elevated copper values and detailed mapping showed that several siliceous and sulphidic zones trending north-easterly and dipping steeply towards the south-east are present. Drilling has confirmed the presence of sulphides, mainly pyrite and pyrrhotite, but the copper values are low (max 1,027ppm between 63-64m). Elevated lead and zinc values are also present. The proposed deep hole on the south-eastern part of the hill to test the system at depth was cancelled as the magnetic target was also explained due to the presence of pyrrhotite in the system.

At **Ox-Eyed Herring**, (Figure 4) holes TAL126RC and TAL136RC tested for deeper sulphidic zones inferred from recent geophysical interpretation. TAL126RC was terminated prematurely at 156m due to strong water flows and the potential for collapse of the collar. Sulphidic zones were intercepted at 126-128m and 139-148m. High copper grades returned from these zones included 2m at 0.57% Cu from 126-128m and 5m at 0.68% Cu from 143-148m (including 2m at 1.17% Cu from 144-146m).

TAL136 RC was drilled to 282m, but no other conductor or sulphidic zone was intercepted at depth apart from the previously tested one. Primary copper mineralisation was intersected:

- 8m at 2.71% Cu from 112-120m (including 5m at 4.23% Cu from 113m);
- 2m at 6.86% Cu from 115-117m.

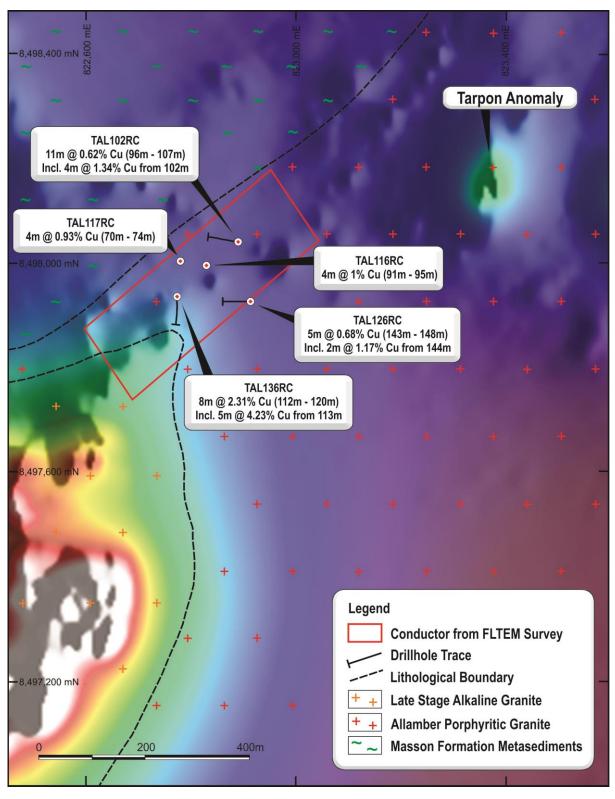


Figure 4. Ox-Eyed Herring / Tarpon Prospect: conductor interpreted from the fixed loop electromagnetic survey (FLEM); recent mineralised intersections; and position of the inferred late stage magnetic intrusion.

The mineralisation is associated with gold, silver, tin and bismuth (assay results have returned bismuth values up to 2.59% Bi within the 116-117m interval). A downhole survey was undertaken and the results are pending. Further work on the petrology and the alteration is needed to assist in targeting the location of the inferred intrusion currently considered as probably responsible for this type of mineralisation. Downhole surveys will assist future targeting for this type of mineralisation.

One deep hole (TAL130RC) was drilled at **North Brumby** to test the strong bulls-eye magnetic anomaly present within the area. Only magnetic hornfels and pyritic-pyrrhotitic graphitic shales were intersected south of the Allamber Granite contact. No base metal anomalism was detected.

At **Nipper** four holes (TAL127RC, 129, 131 and 137RC) tested the potential for skarn-replacement mineralisation at depth. Calc-silicate, carbonatic sequences, graphitic metapelites and ferruginised and siliceous zones were intersected both above and below the base of oxidation. Anomalous copper, zinc, tin and tungsten values are present, but no economic grades have been recorded.

TAL129RC, drilled on the southern section of the prospect, intersected a strongly anomalous copper zone of 17m at 0.35% Cu from 50-67m. Although associated with high tungsten, zinc, bismuth and sporadic tin and gold values, indicating a granitic source, no intrusive rocks were intercepted. TAL131RC was drilled to test at depth the southern exposure of the anomalous ferricrete/gossan. It intercepted patchy siliceous zones with strong anomalism, but of insufficient tenor and extent to upgrade the potential of the area.

Hole TAL137RC was abandoned at 91m due to strong water flow and cavities within calcareous rocks. Three anomalous zones were intersected between 46-49m, 52-56m and 58-63m. High copper assay results included 2m at 1.2% Cu from 54-56m, with high bismuth values. Although anomalous tungsten, zinc and gold values were also recorded, the anomalism is not coincident. This might be due to the reverse faulting and supergene enrichment along the fractures.

No granitic rocks were intersected in the holes. Observed alteration is minor and no magnetite was noted. This downgrades the potential for economic skarn-replacement style of mineralisation.

Holes TAL132-135RC were drilled at **Hatrick** to test the potential for copper/silver in inferred cross-cutting veins within the graphitic schists hosting the known secondary copper mineralisation. Although numerous granitic dykes and veins associated with quartz veining were intercepted, copper values are of low tenor. Again, no magnetite and alteration is present. The highest intersection recorded was **3m at 1.56% Cu** from 204-207m. The magnetic mineral is pyrrhotite, formed during the contact metamorphic process. High arsenic values are present on the selvages of the quartz veins, but gold appears absent in the system.

The lack of magnetite and alteration in the system, despite the density of granitic dykes and veins, combine with the relatively low tenor copper values and the absence of gold values to downgrade the potential for the discovery of economic mineralisation at the Hatrick prospect.

At **Cliff South** holes TAL138RC and TAL139RC were drilled to test the uranium and copper potential below the base of oxidation. Anomalous uranium was intersected, but assays have not returned economic grades from below the base of oxidation in the holes drilled.

Unstable ground conditions, steep slopes, and the onset of wet conditions prevented the large rig from collaring these final holes of a long program at the ideal locations to test below the mineralisation identified in the previous programs. Further follow-up is warranted to complete the planned testing.

For Further Information Contact: Mr Tony Lofthouse - Chief Executive Officer +61 8 9389 6927

THUNDELARRA LIMITED Issued Shares: 319.3M ASX Code: THX

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears. Appendix 1: Laboratory assay results. Assay methods: ICP-OES and ICP-MS after four-acid digest. Holes and intervals not recorded below were not sampled and submitted for assay. "BDL" = "Below Detection Limit".

	From	То	Width				Assa	y Results (p	pm)			
Hole No	(m)	(m)	(m)	Gold	Silver	Arsenic	Bismuth	Copper	Tin	Uranium	Tungsten	Zinc
	(11)	(111)	(11)	Au	Ag	As	Bi	Cu	Sn	U	w	Zn
TAL121RC	32	33	1	BDL	BDL	BDL	4.55	1792	0.8	0.63	99.81	7
TAL121RC	33	34	1	BDL	BDL	BDL	10.29	1284	1.0	1.11	264.40	12
TAL121RC	34	35	1	BDL	BDL	BDL	2.24	468	2.4	2.14	119.47	38
TAL121RC	35	36	1	0.010	BDL	23	1.48	301	3.4	3.02	50.93	47
TAL121RC	48	49	1	BDL	BDL	19	0.42	102	1.3	4.27	13.81	29
TAL121RC	49	50	1	BDL	BDL	21	0.35	54	1.4	5.64	102.30	27
TAL121RC	50	51	1	BDL	BDL	25	1.68	255	1.1	2.29	2297.93	20
TAL121RC	51	52	1	BDL	BDL	17	1.88	145	0.9	1.56	690.78	20
TAL122RC	14	15	1	BDL	BDL	BDL	5.85	1841	0.6	0.22	14.42	-2
TAL122RC	15	16	1	BDL	BDL	BDL	8.58	1383	3.3	0.94	17.26	12
TAL122RC	16	17	1	BDL	BDL	BDL	4.62	550	2.2	1.32	89.40	16
TAL125RC	16	17	1	BDL	1	BDL	0.50	219	2.0	2.15	10.13	16
TAL125RC	17	18	1	BDL	1	BDL	0.50	471	3.2	8.35	243.26	5
TAL125RC	18	19	1	BDL	2	BDL	0.97	603	4.2	9.39	33.40	4
TAL125RC	19	20	1	BDL	1	BDL	1.25	277	2.3	5.06	11.12	7
	60	20 61	1	BDL	1	BDL	0.28	31	2.5		5.80	, 717
TAL125RC TAL125RC				BDL	BDL			31 29		4.79		50
	61	62 62	1			12	0.22		1.4	4.75	4.91	
TAL125RC	62	63	1	BDL	2	12	14.51	124	2.4	6.87	7.17	62
TAL125RC	63	64	1	BDL	3	BDL	51.62	1027	7.8	7.77	9.42	300
TAL126RC	126	127	1	BDL	11	788	512.00	8845	110.6	3.21	1563.05	55
TAL126RC	127	128	1	BDL	4	276	396.43	2630	27.7	6.07	245.35	48
TAL126RC	139	140	1	BDL	3	13	39.67	1477	19.5	3.42	26.14	95
TAL126RC	140	141	1	BDL	BDL	43	150.53	540	20.0	5.39	17.25	133
TAL126RC	141	142	1	BDL	3	BDL	270.08	1758	21.3	3.68	10.72	73
TAL126RC	142	143	1	BDL	2	BDL	9.97	904	11.4	8.76	9.55	32
TAL126RC	143	144	1	BDL	7	BDL	932.77	5507	38.2	4.08	21.11	35
TAL126RC	144	145	1	BDL	12	BDL	33.22	11861	98.7	2.00	13.15	23
TAL126RC	145	146	1	BDL	11	BDL	51.46	11763	97.9	2.67	42.49	74
TAL126RC	146	147	1	BDL	3	BDL	5.82	2569	19.9	1.77	7.26	101
TAL126RC	147	148	1	BDL	3	BDL	7.18	2407	22.0	5.82	13.22	62
TAL126RC	148	149	1	BDL	1	17	2.94	589	10.6	4.82	14.74	31
TAL126RC	149	150	1	BDL	1	12	3.15	877	12.0	5.18	14.48	38
TAL129RC	32	33	1	BDL	BDL	BDL	1.06	148	2.9	19.86	6.76	1080
TAL129RC	33	34	1	BDL	BDL	23	0.62	149	2.3	34.05	7.47	1547
TAL129RC	34	35	1	BDL	BDL	BDL	1.84	133	5.2	20.63	3.84	1207
TAL129RC	35	36	1	BDL	BDL	40	0.68	83	1.1	40.47	35.59	1601
TAL129RC	36	37	1	BDL	BDL	BDL	0.41	86	2.7	37.44	90.18	1479
TAL129RC	37	38	1	BDL	BDL	68	0.13	292	1.4	60.12	46.83	1704
TAL129RC	38	39	1	BDL	BDL	114	0.14	399	0.9	65.40	63.98	2311
TAL129RC	39	40	1	BDL	BDL	49	0.19	361	0.9	65.24	55.81	2772
TAL129RC	40	41	1	BDL	BDL	37	0.16	261	0.9	61.03	73.21	3608
TAL129RC	41	42	1	BDL	BDL	35	0.16	286	1.7	51.48	25.88	3510
TAL129RC	42	43	1	BDL	BDL	37	0.59	321	1.1	58.31	23.88	4585
TAL129RC	43	44	1	BDL	BDL	52	0.24	634	0.8	86.97	27.27	3957
TAL129RC	44	45	1	BDL	BDL	49	0.28	777	0.9	87.09	24.57	3938
TAL129RC	45	46	1	BDL	BDL	65	0.20	972	0.7	87.56	31.89	4086
TAL129RC	46	47	1	BDL	BDL	54	0.86	737	0.7	69.83	41.46	3720
TAL129RC	47	48	1	BDL	BDL	51	1.53	734	1.1	85.55	29.81	3295
TAL129RC	48	49	1	BDL	BDL	BDL	5.76	624	15.3	42.92	79.44	2195
		50	1	BDL	1	BDL	7.78	114	37.5	14.43	19.94	386

	From	То	Width					y Results (p	,			
Hole No	(m)	(m)	(m)	Gold	Silver	Arsenic	Bismuth	Copper	Tin	Uranium	Tungsten	Zinc
				Au	Ag	As	Bi	Cu	Sn	U	W	Zn
TAL129RC	50	51	1	BDL	2	BDL	80.26	6962	89.0	42.15	278.87	234
TAL129RC	51	52	1	BDL	2	BDL	49.71	3973	101.4	64.27	189.98	238
TAL129RC	52	53	1	BDL	1	BDL	99.10	2317	64.8	83.81	146.91	2018
TAL129RC	53	54	1	BDL	2	BDL	154.83	4055	167.6	82.41	249.76	818
TAL129RC	54	55	1	0.260	2	BDL	761.60	5838	84.8	43.96	144.06	1779
TAL129RC	55	56	1	0.060	2	BDL	262.66	5678	59.3	21.58	387.95	1166
TAL129RC	56	57	1	0.040	1	BDL	330.38	3591	91.8	17.89	246.30	1140
TAL129RC	57	58	1	0.100	1	BDL	463.10	3931	64.2	12.43	229.32	781
TAL129RC	58	59	1	BDL	BDL	BDL	181.85	2399	79.7	11.86	315.40	728
TAL129RC	59	60	1	BDL	BDL	BDL	57.24	725	50.0	7.65	364.13	637
TAL129RC	60	61	1	BDL	BDL	BDL	135.01	1180	40.5	10.26	219.07	390
TAL129RC	61	62	1	BDL	BDL	BDL	164.82	2733	51.8	8.76	568.43	429
TAL129RC	62	63	1	0.070	BDL	BDL	356.24	4086	39.6	7.27	269.35	261
TAL129RC	63	64	1	0.150	1	BDL	501.81	4332	61.7	11.02	1280.76	424
TAL129RC	64	65	1	BDL	1	BDL	370.37	4997	115.0	5.96	359.38	243
TAL129RC	65	66	1	BDL	BDL	BDL	162.29	1533	54.9	3.84	216.71	180
TAL129RC	66	67	1	BDL	BDL	BDL	57.00	1144	48.0	4.05	443.68	400
TAL129RC	67	68	1	BDL	BDL	BDL	253.20	901	61.0	4.11	213.46	276
TAL129RC	96	97	1	BDL	BDL	BDL	117.45	800	211.5	6.38	653.58	140
TAL129RC	97	98	1	BDL	BDL	BDL	32.82	785	91.5	3.91	626.22	89
TAL129RC	98	99	1	BDL	BDL	BDL	164.43	1859	53.6	5.44	103.92	94
TAL129RC	99	100	1	BDL	BDL	BDL	6.33	222	19.7	13.27	41.12	65
TAL131RC	71	72	1	0.160	1	BDL	327.17	3040	68.4	2.57	58.39	48
TAL131RC	72	73	1	0.160	BDL	BDL	354.07	706	82.9	2.62	66.80	47
TAL131RC	73	74	1	0.010	BDL	BDL	148.93	1436	144.5	3.43	87.50	98
TAL131RC	74	75	1	BDL	BDL	BDL	126.21	628	176.9	3.80	149.58	130
TAL131RC	75	76	1	0.010	BDL	BDL	55.92	534	135.6	4.48	487.61	108
TAL131RC	76	77	1	0.030	BDL	BDL	101.89	1651	86.6	3.01	651.63	92
TAL131RC	77	78	1	0.010	BDL	BDL	54.59	618	91.5	4.49	860.91	195
TAL131RC	78	79	1	BDL	BDL	BDL	10.70	186	76.8	2.04	296.96	101
TAL131RC	79	80	1	BDL	BDL	32	24.33	3282	54.5	5.94	62.89	187
TAL131RC	80	81	1	0.020	BDL	16	23.51	553	40.0	3.43	503.33	97
TAL131RC	81	82	1	0.020	BDL	BDL	23.34	783	92.0	2.57	301.58	168
TAL131RC	82	83	1	0.010	BDL	BDL	30.11	2015	111.2	2.57	851.08	156
TAL131RC	83	84	1	BDL	BDL	BDL	65.90	1352	93.9	3.12	830.78	165
TAL131RC	84	85	1	BDL	BDL	20	8.31	342	75.3	4.22	97.00	174
TAL131RC	85	86	1	0.020	BDL	BDL	42.00	671	116.7	3.61	939.93	184
TAL131RC	86	87	1	BDL	BDL	BDL	36.95	393	100.2	1.39	138.22	188
TAL131RC	87	88	1	BDL	BDL	BDL	24.33	464	212.7	3.11	675.92	182
TAL131RC	88	89	1	BDL	BDL	BDL	165.36	1428	82.7	5.80	233.88	68
TAL131RC	89	90	1	0.050	1	BDL	246.37	1782	65.1	5.66	173.65	74
TAL131RC	90	91	1	BDL	BDL	BDL	98.98	781	172.7	4.86	558.22	113
TAL131RC	91	92	1	BDL	BDL	BDL	66.33	781	111.9	4.22	748.80	99
TAL131RC	92	93	1	BDL	BDL	15	47.62	518	112.3	5.49	547.59	112
TAL131RC	93	94	1	BDL	BDL	BDL	65.92	1522	98.9	2.69	584.22	112
TALISIRC TAL131RC	95 102	94 103		BDL	BDL	BDL	61.59	922	98.9 98.4	4.17	321.66	205
			1									
TAL131RC	103	104	1	BDL	BDL	15	27.27	610	105.4	2.70	450.34	163
TAL131RC	112	113	1	BDL	BDL	BDL	26.77	1201	118.2	4.32	284.26	137
TAL131RC	113	114	1	BDL	BDL	BDL	23.71	864	122.0	3.23	231.59	129
TAL131RC	114	115	1	BDL	BDL	BDL	26.43	726	89.2	3.46	304.84	154
TAL131RC	115	116	1	BDL	BDL	BDL	38.96	863	95.1	3.56	274.52	129
TAL132RC	2	6	4	BDL	BDL	41	2.36	1190	6.5	9.84	7.32	377
TAL132RC	6	10	4	BDL	BDL	24	1.45	776	5.9	8.36	7.89	231

	From	То	Width					y Results (pp				
Hole No	(m)	(m)	(m)	Gold	Silver	Arsenic	Bismuth Bi	Copper	Tin	Uranium U	Tungsten W	Zinc Zn
TAL 122DC	10	14	4	Au	Ag	As		Cu	Sn			
TAL132RC	10	14	4	BDL	BDL	13	0.71	465	3.3	6.96	7.22	294
TAL132RC	14	18	4	BDL	BDL	38	3.84	439	3.3	6.63	3.70	619
TAL132RC	73	74	4	BDL	BDL	BDL	0.58	176	2.7	8.26	6.95	458
TAL132RC	74	75	4	BDL	BDL	BDL	0.58	162	2.4	9.39	6.92	3402
TAL132RC	80	84	4	BDL	BDL	13	3.01	110	3.4	13.01	8.37	723
TAL132RC	84	88	4	BDL	BDL	15	3.01	23	2.5	6.13	3.08	210
TAL132RC	107	108	1	BDL	BDL	63	9.94	958	13.1	17.25	11.19	125
TAL132RC	108	109	1	BDL	BDL	10	1.59	105	19.4	14.95	9.92	62
TAL132RC	109	110	1	BDL	BDL	76	14.66	3318	22.3	18.32	14.82	122
TAL132RC	110	111	1	BDL	BDL	BDL	2.13	322	11.9	22.20	13.61	61 254
TAL132RC	111	112	1	BDL	BDL	17	3.18	581	14.6	25.78	11.80	254
TAL132RC	112	113	1	BDL	BDL	159	9.69	5403	61.4	21.92	13.47	905
TAL132RC	113	114 115	1	BDL	BDL	BDL	4.28	647	11.7	19.28	10.82	168 95
TAL132RC	114	115	1	BDL	BDL	BDL	2.11	344	6.0	11.46	7.88	
TAL132RC	115 116	116 117	1	BDL	BDL	BDL	0.99	270	4.7 5 4	14.22	11.64 9.29	97 45
TAL132RC TAL132RC	116 121	117 125	1 4	BDL BDL	BDL BDL	BDL BDL	1.01 1.28	151 200	5.4 9.9	10.82 19.73	8.38 12.56	45 55
							2.27					
TAL132RC TAL132RC	125	129	4	BDL BDL	BDL	BDL	68.95	219 486	4.6	4.88 6.24	8.52 6.29	147
	129	133	4		3	416			4.4			74 46
TAL132RC	133	137	4	BDL BDL	BDL BDL	330	29.21 7.82	148	6.0	10.44	6.20	46 47
TAL132RC	138	139	1			174	7.82 1.64	207	4.1	15.13	12.84	
TAL132RC	185	189	4 4	BDL BDL	BDL BDL	26 18	0.91	152 49	2.8	3.43	3.15	71 49
TAL132RC	189	193	4						3.1	2.66	4.63 5.10	
TAL132RC	193	197		BDL	BDL	12	0.90	81	3.3	2.80	5.10	100
TAL133RC	78	79 08	1	BDL	BDL	BDL	0.30	10	1.9	3.11	6.23	73
TAL133RC	97	98	1	BDL	BDL	BDL	0.37	7	1.8	2.74	2.28	67
TAL133RC	98	99	1	BDL	BDL	12	0.96	19	0.2	5.15	1.45	42
TAL133RC	99	100	1	BDL	BDL	13	3.42	13	0.7	3.13	1.92	26
TAL133RC	100	101	1	BDL	1	16	2.27	644	3.0	8.73	5.98	79
TAL133RC	101	102	1	BDL	BDL	BDL	2.74	844	2.9	9.39	4.78	57
TAL133RC	102	103	1	BDL	BDL	BDL	2.00	211	2.7	9.68	4.72	49
TAL133RC	103	104	1	BDL	BDL	BDL	1.70	140	3.5	10.90	6.80	56
TAL133RC	104	105	1	BDL	BDL	BDL	6.19	122	3.4	10.29	5.01	51
TAL133RC	105	106	1	BDL	BDL	BDL	2.40	111	3.5	9.72	5.78	74
TAL133RC	176	177	1	BDL	1	BDL	2.12	36	1.5	11.41	4.18	25
TAL134RC	56	57	1	BDL	1	123	10.40	1426	3.2	11.44	5.12	3490
TAL134RC	57	58	1	BDL	BDL	31	4.73	444	3.2	13.61	6.24	894
TAL134RC	58	59	1	BDL	BDL	15	2.28	274	2.9	14.46	6.54	446
TAL134RC	59	60	1	BDL	BDL	134	15.65	2291	4.8	22.69	15.58	1151
TAL134RC	60	61	1	0.010	BDL	170	16.53	2663	5.2	20.92	17.78	956
TAL134RC	61	62	1	BDL	BDL	76	18.56	1284	4.1	20.47	13.06	1581
TAL134RC	81	82	1	BDL	BDL	17	2.93	258	4.1	18.24	7.89	1190
TAL134RC	82	83	1	0.010	BDL	418	9.15	1044	3.7	17.94	7.14	350
TAL134RC	83	84 125	1	BDL	BDL	115	7.02	1725	3.5	19.72	7.74	492
TAL134RC	124	125	1	0.010	2	42	2.61	41	4.4	3.07	31.47	67
TAL134RC	147	148	1	0.010	BDL	14	0.90	112	6.7	2.47	18.21	1004
TAL134RC	160	161	1	BDL	BDL	BDL	0.81	79	5.3	3.35	7.42	293
TAL134RC	191	192	1	BDL	BDL	BDL	0.85	140	5.1	5.47	8.92	106
TAL134RC	192	193	1	BDL	BDL	BDL	0.84	154	4.7	6.20	7.03	500
TAL135RC	94	98	4	BDL	BDL	37	1.11	109	2.7	13.58	5.35	197
TAL135RC	98	99	1	BDL	BDL	20	10.33	325	2.8	15.24	5.98	954
TAL135RC	99	100	1	BDL	1	122	66.43	1616	2.9	18.76	6.47	1960
TAL135RC	100	104	4	BDL	1	110	54.34	1466	3.1	19.64	6.53	2458

	From	То	Width					y Results (p				
Hole No	(m)	(m)	(m)	Gold Au	Silver Ag	Arsenic As	Bismuth Bi	Copper Cu	Tin Sn	Uranium U	Tungsten W	Zinc Zn
TAL135RC	200	204	4	BDL	BDL	BDL	2.28	172	3.7	5.15	4.23	65
TALISSRC	200	204	4	BDL	8	293	12.78	22989	8.6	5.38	4.23 6.19	253
TALISSRC	204	205	1	BDL	BDL	295 57	4.01	2138	3.8	5.47	4.72	255 57
				BDL	ВDL 7	288	4.01	2138		5.92	4.72 6.21	315
TAL135RC	206	207	1						8.1			
TAL135RC	207	211	4	BDL	BDL	BDL	1.07	222	2.6	6.30	4.83	44
TAL136RC	99	100	1	0.030	3	655	179.02	2524	36.2	6.05	21.11	51
TAL136RC	111	112	1	BDL	3	50	519.75	978	18.5	8.38	19.26	79
TAL136RC	112	113	1	0.010	3	BDL	100.57	1581	21.7	8.32	13.45	81
TAL136RC	113	114	1	0.320	52	34	16251.30	45459	623.9	4.98	10.17	254
TAL136RC	114	115	1	0.090	7	21	1642.55	8101	75.6	6.35	8.66	35
TAL136RC	115	116	1	0.550	79	BDL	7866.49	76186	982.0	4.72	32.57	412
TAL136RC	116	117	1	0.380	55	BDL	25874.70	61003	583.7	0.37	10.53	299
TAL136RC	117	118	1	0.040	20	BDL	1863.58	20895	155.0	2.60	30.20	132
TAL136RC	118	119	1	BDL	4	18	204.22	2295	24.3	2.43	14.90	52
TAL136RC	119	120	1	BDL	3	BDL	125.57	1065	16.8	3.61	13.98	338
TAL136RC	120	121	1	BDL	2	BDL	86.04	480	10.2	4.89	10.74	261
TAL136RC	121	122	1	BDL	2	BDL	77.88	680	11.0	7.65	11.94	44
TAL136RC	122	123	1	BDL	2	BDL	32.02	363	13.1	5.56	9.84	19
TAL136RC	123	124	1	BDL	3	31	29.45	1570	24.4	2.57	10.64	23
TAL136RC	124	125	1	0.030	3	BDL	27.84	2726	20.1	1.98	12.90	19
TAL136RC	125	126	1	0.120	9	BDL	22.39	6477	112.5	4.70	8.88	27
TAL136RC	126	127	1	BDL	2	BDL	139.70	497	10.7	2.58	8.77	17
TAL136RC	127	128	1	0.010	6	BDL	20.92	5819	27.0	1.52	12.30	37
TAL136RC	128	129	1	BDL	2	BDL	17.71	1593	11.3	4.98	12.43	40
TAL136RC	129	130	1	BDL	1	BDL	46.24	335	7.3	3.11	12.99	16
TAL136RC	130	131	1	0.020	2	BDL	32.67	1421	14.3	3.51	13.28	13
TAL137RC	45	46	1	BDL	BDL	BDL	4.65	913	6.0	17.40	33.06	604
TAL137RC	46	47	1	BDL	BDL	BDL	2.47	3586	4.3	15.80	139.71	770
TAL137RC	47	48	1	BDL	BDL	BDL	3.64	4082	10.2	24.05	699.21	1173
TAL137RC	48	49	1	BDL	1	BDL	0.52	5594	3.5	2.47	9.14	443
TAL137RC	49	50	1	BDL	BDL	BDL	19.53	798	28.0	38.99	462.30	220
	49 50		1									440
TAL137RC		51 52		BDL BDL	BDL BDL	BDL BDL	8.64 3.32	555 623	7.3 4.7	72.46 51.82	1019.12 183.29	582
TAL137RC	51	52 52	1									
TAL137RC	52	53	1	0.040	BDL	BDL	22.54	3601	33.2	89.46	709.27	535
TAL137RC	53	54	1	0.040	BDL	BDL	345.28	7724	53.1	99.73	633.37	405
TAL137RC	54	55	1	0.220	BDL	BDL	638.66	10775	91.0	17.84	155.31	127
TAL137RC	55	56	1	0.140	BDL	BDL	405.65	13422	108.8	117.04	326.62	678
TAL137RC	56	57	1	0.030	BDL	BDL	44.29	678	66.1	51.71	366.40	2181
TAL137RC	57	58	1	0.030	BDL	BDL	49.83	934	54.5	44.78	340.94	1671
TAL137RC	58	59	1	0.030	BDL	BDL	45.51	1037	45.3	38.00	348.53	1060
TAL137RC	59	60	1	0.020	BDL	BDL	84.95	1508	45.1	5.89	94.97	743
TAL137RC	60	61	1	0.030	BDL	BDL	220.70	2655	62.3	7.32	3105.92	235
TAL137RC	61	62	1	0.010	BDL	BDL	62.90	737	113.5	3.51	347.68	184
TAL137RC	62	63	1	0.100	BDL	BDL	448.83	5293	50.2	1.22	169.84	67
TAL137RC	63	64	1	BDL	BDL	BDL	17.06	299	28.7	1.07	2039.41	38
TAL137RC	64	65	1	BDL	BDL	BDL	9.59	294	95.3	1.52	2795.45	82
TAL137RC	65	66	1	BDL	BDL	BDL	52.37	325	99.5	2.21	2209.81	146
TAL138RC	148	149	1	BDL	BDL	302	0.41	37	2.2	3.89	5.23	23
TAL138RC	149	150	1	BDL	1	34	0.60	242	2.9	3.95	5.42	27
TAL138RC	150	151	1	BDL	2	227	1.69	6804	6.5	4.34	4.42	54
TAL138RC	151	152	1	BDL	1	151	0.47	1058	3.2	4.46	6.66	36
TAL138RC	152	153	1	BDL	BDL	24	0.21	309	3.4	11.73	6.41	27
TAL138RC	153	154	1	BDL	1	29	0.22	85	3.4	9.30	5.51	29

	From	То	Width				Assa	y Results (pp	om)			
Hole No	From (m)	(m)	(m)	Gold	Silver	Arsenic	Bismuth	Copper	Tin	Uranium	Tungsten	Zinc
	(111)	(,	(,	Au	Ag	As	Bi	Cu	Sn	U	w	Zn
TAL138RC	154	155	1	BDL	BDL	24	0.22	27	2.3	36.90	9.06	61
TAL138RC	155	156	1	BDL	BDL	30	0.44	17	1.9	31.02	5.08	85
TAL138RC	156	157	1	BDL	1	27	0.60	71	2.3	37.08	5.08	75
TAL138RC	157	158	1	BDL	1	43	0.58	317	3.8	123.46	8.09	137
TAL138RC	159	160	1	BDL	1	47	0.39	66	4.0	56.36	6.27	129
TAL138RC	160	161	1	BDL	BDL	25	0.56	27	0.7	14.75	3.24	56
TAL138RC	161	162	1	BDL	1	23	0.66	12	0.2	9.62	1.49	48
TAL138RC	162	163	1	BDL	1	30	0.43	117	0.5	46.64	2.85	67
TAL138RC	163	164	1	BDL	1	31	0.43	149	0.3	140.64	3.97	136
TAL138RC	164	165	1	BDL	1	23	0.25	149	0.2	81.79	4.41	86
TAL138RC	165	166	1	BDL	1	23	0.80	335	0.7	126.76	3.35	71
TAL138RC	166	167	1	BDL	1	46	0.22	708	3.4	155.44	7.81	140
TAL138RC	167	168	1	BDL	BDL	23	0.25	281	1.9	34.34	5.04	54
TAL138RC	171	172	1	BDL	1	48	0.67	15	2.4	8.04	6.61	225
TAL138RC	172	173	1	BDL	-1	51	0.32	302	2.3	73.12	7.69	149
TAL138RC	173	174	1	BDL	1	45	0.21	227	3.0	41.52	9.44	169
TAL138RC	174	175	1	BDL	1	39	0.72	75	2.3	71.97	6.83	218
TAL138RC	175	176	1	BDL	BDL	42	1.65	267	3.5	83.74	9.69	179
TAL138RC	176	177	1	BDL	BDL	24	2.11	553	1.4	146.19	31.27	202
TAL138RC	177	178	1	BDL	1	47	3.00	407	1.4	91.02	8.91	182
TAL138RC	178	179	1	BDL	1	63	3.45	256	1.1	85.53	10.23	190
TAL138RC	179	180	1	BDL	BDL	42	2.10	1080	1.2	107.53	9.95	209
TAL138RC	180	181	1	BDL	BDL	44	1.51	332	1.9	115.68	6.29	112
TAL138RC	181	182	1	BDL	BDL	23	1.04	95	2.3	37.52	6.28	86
TAL138RC	182	183	1	BDL	BDL	35	0.48	144	2.3	60.00	6.59	181
TAL138RC	183	184	1	BDL	BDL	31	0.72	91	2.2	99.38	5.06	87
TAL138RC	239	240	1	BDL	1	61	0.47	167	3.3	13.85	122.27	217
TAL138RC	240	241	1	BDL	1	51	0.40	893	3.9	90.10	6.32	305
TAL138RC	241	242	1	BDL	BDL	44	0.21	471	3.3	20.55	6.97	229
TAL138RC	242	243	1	BDL	BDL	45	1.19	302	2.7	23.76	5.59	241
TAL138RC	243	244	1	BDL	BDL	34	0.52	222	2.3	18.43	3.58	138
TAL138RC	244	245	1	BDL	1	39	0.32	477	3.0	28.29	4.34	176
TAL138RC	245	246	1	BDL	1	47	18.07	1729	5.3	23.39	5.71	327
TAL138RC	246	247	1	BDL	1	101	6.46	110	6.3	5.79	4.55	184
TAL138RC	247	248	1	BDL	1	45	4.83	255	6.1	5.54	10.67	166
TAL138RC	248	249	1	BDL	1	44	6.81	340	6.8	9.91	8.11	176
TAL138RC	249	250	1	BDL	BDL	41	5.68	388	5.0	7.86	6.08	172
TAL138RC	250	251	1	BDL	BDL	42	3.46	266	3.9	30.14	7.13	654
TAL138RC	251	252	1	BDL	2	41	4.48	1021	4.4	117.07	6.28	1013
TAL138RC	252	253	1	BDL	1	80	10.83	147	2.5	9.95	2.57	484
TAL138RC	253	254	1	BDL	1	56	2.32	39	1.4	5.30	1.62	218
TAL138RC	254	255	1	BDL	1	64	1.13	77	2.5	98.03	31.08	359
TAL138RC	255	256	1	BDL	2	49	0.59	559	2.4	670.72	6.78	1971
TAL138RC	256	257	1	BDL	2	62	0.88	138	2.0	203.62	3.66	692
TAL138RC	257	258	1	BDL	2	59	0.69	69	2.0	73.12	1.99	519
TAL138RC	276	277	1	BDL	1	47	0.68	79	10.9	3.03	3.88	82
TAL138RC	277	278	1	BDL	2	73	0.82	413	10.1	3.20	9.57	101
TAL138RC	278	279	1	BDL	1	50	1.56	299	23.0	5.36	9.32	196
TAL138RC	279	280	1	BDL	1	68	1.21	944	5.2	18.31	8.01	572
TAL138RC	280	281	1	BDL	2	27	1.51	615	14.3	95.44	27.72	335
TAL138RC	281	282	1	BDL	1	23	0.61	827	14.8	71.48	15.43	279
TAL138RC	282	283	1	BDL	1	32	0.43	284	19.9	60.87	20.21	225
TAL138RC	283	284	1	BDL	1	31	1.06	186	22.2	115.81	29.45	307

	From	То	Width		Assay Results (ppm)								
Hole No	(m)	(m)	(m)	Gold	Silver	Arsenic	Bismuth	Copper	Tin	Uranium	Tungsten	Zinc	
	(,	(,	(,	Au	Ag	As	Bi	Cu	Sn	U	w	Zn	
TAL138RC	284	285	1	BDL	1	37	1.21	149	9.3	124.74	18.12	271	
TAL138RC	285	286	1	BDL	2	37	1.26	1288	3.4	146.91	8.62	285	
TAL138RC	286	287	1	BDL	1	32	1.03	745	2.5	89.69	9.71	272	
TAL138RC	287	288	1	BDL	1	23	1.49	474	2.1	94.50	11.29	207	

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Drill chips from each metre interval were examined visually and logged by the geologist. Any evidence of alteration or the presence of mineralisation was noted on the drill logs and all intervals were tested by hand-held XRF for metal content. Intervals reporting metal concentrations were bagged and numbered for laboratory analysis. Representative samples were obtained by riffle splitting all dry material recovered from each metre drill interval. Wet samples were spear sampled (see below). Every 20 to 25 samples submitted to the laboratory include at least one duplicate and one blank sample. The Delta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule.
	• Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	All twenty-one holes were Reverse Circulation holes drilled by truck-mounted Schramm T450 and T685W 1350/500 RC rigs with booster and auxiliary.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Where moisture was encountered the sample recovery was still excellent, estimated at >80%. Samples were collected through a cyclone and split using a rig-mounted riffle splitter. Every 20 to 25 samples submitted to the laboratory will include at least one duplicate and one blank sample. The Delta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's

		(Olympus) recommended schedule.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No evidence has been observed of a relationship between sample recovery and grade. The excellent sample recoveries obtained preclude any assumption of grain size bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill chips are examined visually by the site geologist who classifies the lithologies and any mineralisation or alteration observed and records all data on the drill log. Representative chips are retained in chip trays for each metre interval drilled. It is not standard practice to photograph each interval but sections exhibiting characteristics of particular interest or geological relevance are photographed. The entire length of each drillhole is logged and evaluated.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or	No core drilling was carried out.
techniques and sample preparation	all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	• Samples were collected through a cyclone and split using a rig-mounted riffle splitter. The majority of the samples obtained were sufficiently dry for this process to be effective. Material too moist for effective riffle splitting was sampled using a 4cm diameter spear. Each such sample submitted to the laboratory comprised three spear samples taken from different directions into the material for each metre interval.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• The sample preparation techniques are well-established standard industry best practice techniques. Drill chips are dried, crushed and pulverised (whole sample) to 85% of the sample passing -75µm grind size.
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	• Field QC procedures include using certified reference materials as assay standards. Also every 20 to 25 samples submitted to the laboratory will include at least one duplicate and one blank sample.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	• Evaluation of the standards, blanks and duplicate samples assays has fallen within acceptable limits of variability.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	• The size of samples taken is consistent with industry standard best practice and is considered appropriate for the style(s) of mineralisation being sought.
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 85% passing -75µm and assayed for base metals using ICP-MS or ICP-OES following a four-acid digest of a 25g charge.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	• The handheld XRF equipment used is an Olympus Delta XRF Analyser Thundelarra follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Thundelarra uses the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	• The laboratory that carried out the assays is ISO certified and conducts its own internal QA/QC processes in addition to the QA/QC implemented by Thundelarra in the course of its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory.

THUNDELARRA LIMITED

ASX RELEASE 3 February 2015

Verification	• The verification of significant intersections by either	All significant intersections are calculated and verified on
of sampling and assaying	 The vertication of significant intersections by enter independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 An significant intersections are calculated and verified on screen and are reviewed by the CEO prior to reporting. The program included no twin holes. Data is collected and recorded initially on hand-written logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar locations were located and recorded using hand-held GPS (Garmin 62S model) with a typical accuracy of ±5m. Down-hole surveys are carried out on holes exceeding 100m length with readings taken every 50m. The map projection applicable to the area is Australian Geodetic MGA94, Zone 52 (Zone 53 at Cliff South prospect). Topographic control is based on standard industry practice of using the GPS readings. Local topography is relatively flat. At this early stage of exploration detailed altimetry is not warranted.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole collars were located and oriented so as to deliver maximum relevant geological information to allow the geological model being tested to be assessed effectively. These drillholes are part of an early-stage exploration program in the Allamber Project area to help prioritise future targets. There are not yet sufficient data for any assessment of a Mineral Resource or Ore Reserve. Where initial hand-held XRF analysis indicated moderate anomalism, 4m samples were composited. For the most part samples were taken at 1m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Given the early stage of this exploration it is not yet possible to confirm the exact orientation of the structures and targets modelled for testing. Drillholes are positioned in order to test the interpretation of the data to hand but the results of the drilling are likely to lead to re-interpretation. The exploration is still at too early a stage of progress to allow any conclusion with regard to the possibility of sampling bias having been introduced.
Sample security	The measures taken to ensure sample security.	• Samples are collected, transported and stored by Company personnel to secure locked storage at Pine Creek until delivered by Company personnel to the laboratory for assay.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Internal reviews are carried out regularly. However, to date insufficient data has been collected and the prospects are not sufficiently advanced to warrant or necessitate a full external audit or review.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Allamber project comprises 9 ELs, all wholly controlled by THX (10043, 10167, 23506, 24549, 25868, 27365, 27649, 28857 and 29260). The licences are contiguous. The Kakadu Park is to the east, across the Mary River, but no part of the project area impinges on the park. The project is in the Mary River East Station pastoral lease. The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Regional exploration was carried out in the past by a number of companies, including CRA, Aztec Mining, and Atom Energy. Drilling by Atom defined a small uranium resource at Cleo, near THX's Cliff South targets. Copper targets identified by CRA soil sampling programs had not previously been fully investigated due to swampy ground access difficulties. Aztec explored for copper in areas where small artisanal mining operations had exploited supergene copper occurrences (such as at Hatrick). THX's exploration continues to try to validate and expand the work carried out by previous explorers.
Geology	Deposit type, geological setting and style of mineralisation.	 Exploration has identified a number of different potential styles and settings of mineralisation at different locations within the project area. THX will systematically investigate each of these targets: shear-hosted mineralisation in demagnetised zones containing supergene copper (Hatrick and Catfish style); skarn replacement style with copper, tin, tungsten, gold mineralisation (Nipper style, and elsewhere); sheeted quartz veins containing copper (chalcopyrite, pyrrhotite, pyrite) related to late stage granitic intrusions (Tarpon, Ox-Eyed Herring style); copper and uranium mineralisation associated with topographic high over a gravity anomaly, suggesting possible affiliation with a deep-seated mineralised porphyry and exhibiting characteristics akin to of IOCG style bodies seen at Olympic Dam and Prominent Hill (Cliff South and Cleo style); graphite mineralisation common along the 18km extent of the contact of the carbonaceous metapelites of the Masson formation with the Allamber Springs granite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• An explanation of the interpreted significance of the results reported herein in the context of the exploration models being tested is provided in the body of this report. Full assay results and all details of the collar locations and technical parameters of each hole drilled are presented in Appendix 1 and in Table 1 respectively.

	• If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All relevant information has been provided in this report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. 	 No cut-off grades have been used in the evaluation of the assay results of samples from holes drilled in this program.
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 Aggregate intercepts reported as straight arithmetic averages. eg Hole TAL135RC reports 3m at 1.56% Cu from 204m, calculated as the sum of the individual 1m grades divided by the total interval length: [22,989+2,138+21,665]/[207-204] = [46,792]/[3] = 15,597ppm 15,597 ppm = 1.56%
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been reported.
Relationship between mineralisation widths and	• These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The exploration of the targets reported herein is still at a relatively early stage and insufficient data points exist yet to allow these relationships to be reported with any certainty.
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• All intercepts are reported as down hole intercepts and true width is unknown. Where relevant in this report the abbreviations "twu" – for "true width unknown" – is used.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	• Drill collar locations: refer to Figure 2. A summary of significant drill intercepts is presented in Table 1. To date, insufficient drilling has been carried out at each of the various targets being tested to support compilation of sections that would be geologically meaningful and/or instructive.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All exploration results from this drill program are reported herein.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment;	• The exploration reported herein is still at an early stage. As additional follow-up exploration is planned and executed, relevant information will be announced to provide context to such programs.
	metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• It should be noted that uranium mineralisation is present in and around the Cliff South and Cleo prospects. Exploration in such settings requires extensive health and safety controls, including, inter alia, comprehensive site induction and training and also radiation monitoring badges for company personnel and for drilling contractors. THX ensures full compliance with all such OHS initiatives.

Further work	• The nature and scale of planned further work (eg tests for	• The information obtained from this year's exploration will
	lateral extensions or depth extensions or large-scale step-out	be assessed and programs of work for the new field season
	drilling).	will be prepared, recognising the Company's cash balance in
		the context of types of work that can be funded. Follow-up
		drilling at each of these prospects is the Company's aim.
	• Diagrams clearly highlighting the areas of possible	• Future work programs have not yet been finalised. Where
	extensions, including the main geological interpretations and	possible, and where sufficient technical information exists,
	future drilling areas, provided this information is not	the location of interpreted zones of potential mineralisation
	commercially sensitive.	have been shown in the figures in this report.

---00000----