

ASX/Media Announcement

03 November 2016

WIDE GOLD ZONES EXTEND THE MINERALISATION AT LYDIA

Thundelarra is very excited by the first assay results received from this drilling programme at Garden Gully. Eight deep follow-up Reverse Circulation ("RC") holes drilled at Lydia for 2,066m advance so far. Assay results for the first six holes are reported here, with four of the six reporting major intersections of gold mineralisation that are highly significant.

The results so far describe a mineralised system that is demonstrating strike and depth continuity. Wide zones of gold mineralisation consistently exhibit higher grade "shoots" within the mineralised intervals, supporting a typical model of many Eastern Goldfields gold deposits hosted in Archaean greenstone belts.

Highlights:

- > Lydia delivers again: new wide zones of gold mineralisation
- > 80m at 1.9 gpt Au from 79m in TGGRC034
 - o including 5m at 6.0 gpt Au from 81m
 - o and 16m at 3.8 gpt Au from 113m
- > 45m at 1.3 gpt Au from 215m in TGGRC033
 - o including 14m at 2.2 gpt Au from 216m
 - o and 15m at 1.6 gpt Au from 243m
- > Drilling continues to test the other Garden Gully prospects
- > Phase 3 follow-up drilling planned for Lydia

The drilling currently underway is the first modern exploration programme to test at depth the local geology that was the source of historical gold production of 21,000 ounces at 21 gpt. These records clearly indicate that the Garden Gully area hosted high grade shoots that were targets for the old miners. Our initial scout drilling at Lydia (**7m at 24.5 gpt Au**) showed that such shoots can still exist, waiting to be discovered, with primary gold mineralisation also present at depth: **37m at 1.8 gpt Au** from 71m downhole including **12m at 4.0 gpt Au** from 96m (ASX release 13 Sep 2016).

These results continue to support our model for the potential existence of a significant body of gold mineralisation in an area and geological terrane with demonstrated potential for commercial gold mineralisation. This announcement reports downhole widths: true widths are not yet known.

Thundelarra's Chairman Phil Crabb said:

"These are significant gold results. Garden Gully is close to Meekatharra and nearby gold treatment infrastructure. For many years the area has only been lightly explored. Thundelarra's aggressive and ongoing drilling will continue to generate excitement for shareholders." The Garden Gully Project, wholly-owned by Thundelarra, comprises 14 granted Prospecting Licences, one granted Exploration Licence, and one Exploration Licence application, covering about 65.5 km² in aggregate. It is located in Western Australia's Murchison region (Figure 1) about 20 km north-west of the town of Meekatharra.

Figure 1. Garden Gully location showing proximity to local plant and infrastructure. Scale: grid spacing is 25 km.

The current drilling at Lydia is designed to test if the mineralising system has developed zones that repeat, that have strike extent, and that are showing evidence of down-plunge extent.

The results so far are an unqualified success.

Thundelarra has drilled 16 holes at Lydia to date, with assays back from 14. Of these, 7 holes have returned gold mineralisation of significant grade and over significant intervals (Tables 1, 2). A further 3 returned intersections with materially anomalous gold grades that underpin the potential of the prospect. These results – gold mineralisation in 10 out of the first 14 holes drilled at the prospect – are clear testament to the expertise of our geological team in evaluating and targeting the unquestioned potential of this very exciting Garden Gully area.

The mineralisation controls at Lydia, as interpreted based on information collected to date, are inferred to have a prospective strike length of about 750m in total, offset by an inferred fault (Figure 2). Drilling to date has only tested two sections (totalling about 350m) of this total strike length with the mineralisation showing continuity for about 200m of the northern section. The drilling also shows mineralisation continuing at 260m downhole (TGGRC033). 400m of this inferred system remains to be tested, with the structure still open to the north and south.

The exact geometry still needs to be established: further drilling is planned at Lydia as part of the continuing current programme. Diamond drilling, probably as diamond tails, will be required to provide structural information to allow better understanding of the mineralising controls. Until such information is available and the structural controls better understood, the preparation of cross-sections is considered premature and potentially misleading.

Hole No	From	То	Interval	Au(g/t)	Comment
TGGRC029	111	114	3m	2.1	Edge of another shoot?
inc	111	112	1m	5.2	Higher grade section
TGGRC032	93	103	10m	1.6	Probable mineralised shoot
inc	97	101	4m	3.8	Higher grade section
	118	135	17m	1.0	Probable mineralised shoot
inc	120	128	8m	1.8	Higher grade section
TGGRC033	164	171	7m	2.6	Probable mineralised shoot
inc	166	170	4m	4.3	Higher grade section
	215	260	45m	1.3	Probable mineralised shoot
inc	216	230	14m	2.2	Higher grade section
and	243	258	15m	1.6	Probable mineralised shoot
TGGRC034	79	159	80m	1.9	Probable mineralised shoot
inc	81	86	5m	6.0	Higher grade section
and	89	97	8m	1.3	Elevated grade section
and	100	105	5m	4.9	Higher grade section
and	113	129	16m	3.8	Higher grade section
inc	124	129	5m	4.9	Higher grade section
and	145	150	5m	2.6	Higher grade section
and	214	218	4m	1.3	Edge of another shoot?

Table 1. Significant new drill intercepts at Lydia. See Appendix 1 for assays from hole 29 onwards.

The gold grade distribution within the mineralised intervals in these holes continues to support the model of broader zones of mineralisation containing single or multiple interpreted shoots of higher grade mineralisation. It is also consistent with the results from the earlier, shallower drilling:

Results from	previousl	y reporte	d drilling (A	SX release	dated 13 Sep 2016)
Hole No	From	То	Interval	Au(g/t)	Comment
TGGRC014	23	30	7m	0.5	
	35	44	9m	0.5	
TGGRC015	49	55	6m	2.8	Probable mineralised shoot
	49	51	2m	8.0	High grade section
TGGRC017	74	75	1m	0.5	
TGGRC018	11	18	7m	24.5	First assay: high grade shoot
	11	18	7m	17.8	Re-sampled and re-assayed
TGGRC019	76	77	1m	0.5	
TGGRC026	48m	51m	3m	1.2	
	71m	108m	37m	1.8	Probable mineralised shoot
	96m	108m	12m	4.0	High grade section

Table 2. Significant drill intercepts at Lydia. See Appendix 1 for assays from hole 29 onwards.

Figure 2 overleaf shows the Lydia prospect with drill collar locations and mineralised intercepts.

Figure 2. Lydia Prospect drill collars and significant intercepts. Scale: grid spacing is 50m.

Hole ID	Easting	Northing	RL	Depth	Azimuth	Dip	Comment
TGGRC029	644438	7072461	485m	322m	300 ⁰	-60 ⁰	
TGGRC030	644419	7072550	485m	304m	300 ⁰	-60 ⁰	
TGGRC031	644360	7072740	480m	262m	300 ⁰	-70 ⁰	
TGGRC032	644363	7072797	480m	184m	300 ⁰	-70 ⁰	
TGGRC033	644379	7072854	480m	268m	300 ⁰	-70 ⁰	
TGGRC034	644369	7072856	480m	268m	240 ⁰	-70 ⁰	
TGGRC035	644351	7072802	480m	268m	240 ⁰	-70 ⁰	Assays
TGGRC036	644409	7072544	480m	190m	190 ⁰	-70 ⁰	pending

Table 3. Details of the follow-up RC holes drilled at Lydia Prospect. All locations on Australian Geodetic Grid GDA94-50. The azimuth shown is the magnetic azimuth of the drilling direction.

Downhole Electromagnetic (DHEM) surveys will be carried out on most of these deeper RC holes drilled. No other conductive lithologies were logged in the holes and so any off-hole conductors identified could logically be sulphidic zones (which are hosting the gold mineralisation). Significant results, if and when obtained, will be announced immediately they become available.

Drilling at the other Garden Gully prospects (Figure 3) is continuing.

Figure 3. Prospect locations and drill collars in the Garden Gully Project, shown on TMI image.

One highly significant aspect of these Lydia results is the clear confirmation that the mineralisation is primary *as well as* supergene – not *just* supergene. This is of paramount importance if the near surface results are to offer any potential for the existence of a significant primary mineralising system at depth. These results at Lydia are providing every indication that such a system may indeed exist.

The Garden Gully Project has already delivered a wealth of riches in terms of valid exploration targets to be tested and it is still very early days in the exploration of the Project's potential.

The deeper RC programme continues and will provide news flow to the end of calendar 2016 and beyond. Samples from the recent drilling programme at Allamber are also currently being prepared for laboratory and petrographic analysis. Results will be reported in due course.

For Further Information Contact:	THUNDELARRA	LIMITED
Mr Tony Lofthouse - Chief Executive Officer	Issued Shares:	423.5M
+61 8 9389 6927	ASX Code:	ТНХ

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears. Appendix 1: Laboratory assay results: Fire Assay 50g charge after Aqua Regia digest with ICP analysis.

Any intervals reporting gold content below 0.1 ppm (0.1 gpt) are not recorded in the following table, except as part of a longer interval of consecutive samples, where relevant.

Hole No	From	То	Width (m)	Au (ppm)	Comment
TGGRC029	14	17	3	0.42	
TGGRC029	111	112	1	5.29	1m @ 5.3 gpt
TGGRC029	112	113	1	1.03	
TGGRC029	113	114	1	0.22	
TGGRC030	60	61	1	0.12	
TGGRC031	227	228	1	0.12	
TGGRC032	54	55	1	0.13	
TGGRC032	55	56	1	0.10	
TGGRC032	56	57	1	0.44	
TGGRC032	89	90	1	0.11	
TGGRC032	93	94	1	0.21	93m-103m
TGGRC032	94	95	1	0.37	10m @ 1.6 gpt
TGGRC032	95	96	1	0.22	inc
TGGRC032	96	97	1	0.27	97m-101m
TGGRC032	97	98	1	2.54	4m @ 3.8 gpt
TGGRC032	98	99	1	2.51	
TGGRC032	99	100	1	8.78	
TGGRC032	100	101	1	1.20	
TGGRC032	101	102	1	0.11	
TGGRC032	102	103	1	0.10	
TGGRC032	105	106	1	0.22	
TGGRC032	112	113	1	0.19	
TGGRC032	115	116	1	0.11	
TGGRC032	118	119	1	0.22	118m-135m
TGGRC032	119	120	1	0.17	17m @ 1.0 gpt
TGGRC032	120	121	1	1.24	inc
TGGRC032	121	122	1	2.31	120m-128m
TGGRC032	122	123	1	0.25	8m @ 1.8 gpt
TGGRC032	123	124	1	2.00	
TGGRC032	124	125	1	1.15	
TGGRC032	125	126	1	4.87	
TGGRC032	126	127	1	0.87	
TGGRC032	127	128	1	1.51	
TGGRC032	128	129	1	0.66	
TGGRC032	129	130	1	0.50	
TGGRC032	130	131	1	0.19	
TGGRC032	131	132	1	0.04	
TGGRC032	132	133	1	0.04	
TGGRC032	133	134	1	1.28	
TGGRC032	134	135	1	0.12	
TGGRC032	139	140	1	0.33	
TGGRC032	149	150	1	0.21	
TGGRC033	74	75	1	0.13	
TGGRC033	75	76	1	0.37	
TGGRC033	78	79	1	0.10	

TGGRC033 112 113 1 0.17 TGGRC033 144 145 1 0.17 TGGRC033 144 145 1 0.17 TGGRC033 145 146 1 0.13 TGGRC033 155 156 1 0.12 TGGRC033 164 165 1 0.40 TGGRC033 166 167 1 1.25 inc TGGRC033 166 167 1 1.25 inc TGGRC033 166 167 1 1.5 inc TGGRC033 168 169 1 6.63 4m @ 4.3 gpt TGGRC033 170 171 1 0.15 TGGRC033 178 179 1 0.66 TGGRC033 183 184 1 0.17 TGGRC033 215 216 0.20 215m-260m TGGRC033 217 218 1 6.52 inc 166 166 <	Hole No	From	То	Width (m)	Au (ppm)	Comment
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TGGRC033	112	113	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TGGRC033	144	145	1	0.17	
TGGRC033 154 155 1 0.22 TGGRC033 160 161 0.40 TGGRC033 164 165 1 0.37 TGGRC033 164 165 1 0.09 7m @ 2.6 gpt TGGRC033 166 167 1 1.25 inc TGGRC033 166 167 1 1.25 inc TGGRC033 168 169 1 6.63 4m @ 4.3 gpt TGGRC033 169 170 1 4.68 1 TGGRC033 177 178 1 0.29 1 TGGRC033 177 178 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 221 222 1 0.03 1.06 </td <td>TGGRC033</td> <td>145</td> <td>146</td> <td>1</td> <td>0.83</td> <td></td>	TGGRC033	145	146	1	0.83	
TGGRC033 154 155 1 0.22 TGGRC033 160 161 0.40 TGGRC033 164 165 1 0.37 TGGRC033 164 165 1 0.09 7m @ 2.6 gpt TGGRC033 166 167 1 1.25 inc TGGRC033 166 167 1 1.25 inc TGGRC033 168 169 1 6.63 4m @ 4.3 gpt TGGRC033 169 170 1 4.68 1 TGGRC033 177 178 1 0.29 1 TGGRC033 177 178 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 221 222 1 0.03 1.06 </td <td>TGGRC033</td> <td>146</td> <td>147</td> <td>1</td> <td>0.13</td> <td></td>	TGGRC033	146	147	1	0.13	
TGGRC033 155 156 1 0.12 TGGRC033 160 161 1 0.40 TGGRC033 164 165 1 0.37 164m-171m TGGRC033 166 167 1 1.25 inc TGGRC033 166 167 1 1.25 inc TGGRC033 168 169 1 4.68 TGGRC033 170 171 1 0.15 TGGRC033 178 179 1 0.66 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.32 216m-230m TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 221 222 1 0.50 1 TGGRC033 222 223 1 0.06 TGGRC033 222				1		
TGGRC033 160 161 1 0.40 TGGRC033 164 165 1 0.37 164m-171m TGGRC033 166 166 1 0.25 inc TGGRC033 166 167 1 1.25 inc TGGRC033 167 168 1 4.74 166m-170m TGGRC033 169 170 1 4.68				1		
TGGRC033 164 165 1 0.37 164m-171m TGGRC033 165 166 1 0.09 7m @ 2.6 gpt TGGRC033 166 167 1 1.25 inc TGGRC033 166 167 1 1.25 inc TGGRC033 168 169 1 6.63 4m @ 4.3 gpt TGGRC033 169 170 1 4.68 TGGRC033 177 178 1 0.29 TGGRC033 178 179 1 0.66 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.32 216m-230m TGGRC033 219 220 1 1.32 16GRc033 220 21 1 1.32 TGGRC033 221 222 1 0.50 15GRc033 222 223 1 0.03 TGGRC033 222 223 1 0.03 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
TGGRC033 165 166 1 0.09 7m @ 2.6 gpt TGGRC033 166 167 1 1.25 inc TGGRC033 168 169 1 6.63 4m @ 4.3 gpt TGGRC033 169 170 1 4.68 TGGRC033 170 171 1 0.15 TGGRC033 178 179 1 0.66 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.72 15m @ 1.3 gpt TGGRC033 218 219 1 4.32 216m-230m TGGRC033 220 21 1.94 14m @ 2.2 gpt 1 TGGRC033 221 222 1 0.50 1 1 TGGRC033 223 224 1 0.03 1 1 1 1 1 1 1				1		164m-171m
TGGRC033 166 167 1 1.25 inc TGGRC033 167 168 1 4.74 166m-170m TGGRC033 169 170 1 4.68 TGGRC033 169 170 1 4.68 TGGRC033 170 171 1 0.15 TGGRC033 177 178 1 0.29 TGGRC033 183 184 1 0.17 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.32 216m-230m TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 20 1 1.32 16GGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.03 14m @ 2.2 gpt 1 TGGRC033 223 224 1 0.03 14m @ 2.2 gpt 1 TGGRC033						
TGGRC033 167 168 1 4.74 166m-170m TGGRC033 169 170 1 4.68 4m @ 4.3 gpt TGGRC033 169 170 1 4.68 4m @ 4.3 gpt TGGRC033 170 171 1 0.15 1 TGGRC033 177 178 1 0.29 1 TGGRC033 183 184 1 0.17 1 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.32 216m-230m TGGRC033 216 217 1 4.32 216m-230m TGGRC033 219 20 1 1.94 14m @ 2.2 gpt 1 TGGRC033 221 222 1 0.50 1 <						
TGGRC033 168 169 1 6.63 4m @ 4.3 gpt TGGRC033 169 170 1 4.68 TGGRC033 170 171 1 0.15 TGGRC033 177 178 1 0.29 TGGRC033 178 179 1 0.66 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.32 216m-230m TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 226 227 1 1.36 TGGRC033 226 227 1 1.36 TGGRC033 230 231 1 0.50<						
TGGRC033 169 170 1 4.68 TGGRC033 170 171 1 0.15 TGGRC033 177 178 1 0.29 TGGRC033 178 179 1 0.66 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 226 227 1 1.36 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.02						
TGGRC033 170 171 1 0.15 TGGRC033 177 178 1 0.29 TGGRC033 178 179 1 0.66 TGGRC033 183 184 1 0.17 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 200 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 222 223 1 0.03 TGGRC033 224 225 1 0.35 TGGRC033 227 228 1 4.23 TGGRC033 227 228 1 4.23 TGGRC033 230 231 1 0.09 TGGRC033						
TGGRC033 177 178 1 0.29 TGGRC033 178 179 1 0.66 TGGRC033 183 184 1 0.17 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 218 219 1 4.32 216m-230m TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 221 222 1 0.50 1 TGGRC033 222 223 1 0.06 1 TGGRC033 224 225 1 0.35 1 1 TGGRC033 226 227 1 1.36 1						
TGGRC033 178 179 1 0.66 TGGRC033 183 184 1 0.17 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 217 218 1 6.52 inc TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 223 224 1 0.03 TGGRC033 225 226 1 0.24 TGGRC033 226 227 1 1.36 TGGRC033 227 228 1 4.23 TGGRC033 229 230 1 1.09 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.02 TGGRC033 230 231 1 0.02 TGGRC033 2						
TGGRC033 183 184 1 0.17 TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 217 218 1 6.52 inc TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 222 223 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 225 226 1 0.24 TGGRC033 226 227 1 1.36 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.50 TGGRC033 232 233 1 0.02 TGGRC033 232 233 1 0.02						
TGGRC033 215 216 1 0.20 215m-260m TGGRC033 216 217 1 4.77 45m @ 1.3 gpt TGGRC033 217 218 1 6.52 inc TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 225 226 1 0.24 TGGRC033 226 227 1 1.36 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.02 TGGRC033 232 233 1 0.02 TGGRC033 231 232 1 0.77 TGGRC033 232 233 1 0.02 TGGRC033 2						
TGGRC033 216 217 1 4.77 45m @ 1.3 gpt inc TGGRC033 217 218 1 6.52 inc TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 223 224 1 0.03 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 226 227 1 1.36 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.50 TGGRC033 232 233 1 0.77 TGGRC033 232 233 1 0.77 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 <						215m-260m
TGGRC033 217 218 1 6.52 inc TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 222 223 1 0.06 TGGRC033 224 225 1 0.35 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.50 TGGRC033 231 232 1 0.77 TGGRC033 231 232 1 0.77 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 234 235 1 0.02 TGGRC033 237 238				1		
TGGRC033 218 219 1 4.32 216m-230m TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 222 223 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 226 227 1 1.423 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.50 TGGRC033 232 233 1 0.02 TGGRC033 232 233 1 0.02 TGGRC033 235 236 1 0.38 TGGRC033 237 238 1						
TGGRC033 219 220 1 1.94 14m @ 2.2 gpt TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 222 223 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 226 227 1 1.36 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.50 TGGRC033 231 232 1 0.77 TGGRC033 232 233 1 0.08 TGGRC033 234 235 1 0.03 TGGRC033 235 236 1 0.38 TGGRC033 237 238 1 0.28 TGGRC033 237 238 1 0.28						
TGGRC033 220 221 1 1.32 TGGRC033 221 222 1 0.50 TGGRC033 222 223 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 227 228 1 4.23 TGGRC033 229 230 1 1.09 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.77 TGGRC033 232 233 1 0.02 TGGRC033 232 233 1 0.02 TGGRC033 235 236 1 0.38 TGGRC033 235 236 1 0.28 TGGRC033 237 238 1 0.02 TGGRC033 240 241 1 0.04 TGGRC033<						
TGGRC033 221 222 1 0.50 TGGRC033 222 223 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 226 227 1 4.23 TGGRC033 228 229 1 4.23 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.08 TGGRC033 232 233 1 0.08 TGGRC033 234 235 1 0.03 TGGRC033 235 236 1 0.38 TGGRC033 237 238 1 0.28 TGGRC033 237 238 1 0.28 TGGRC033 239 240 1 0.06 TGGRC033 239 240 1 0.02 TGGRC033<				1		
TGGRC033 222 223 1 0.06 TGGRC033 223 224 1 0.03 TGGRC033 224 225 1 0.35 TGGRC033 226 227 1 1.36 TGGRC033 226 227 1 4.23 TGGRC033 228 229 1 4.23 TGGRC033 229 230 1 1.09 TGGRC033 231 232 1 0.77 TGGRC033 232 233 1 0.08 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 236 237 1 1.00 TGGRC033 236 237 1 1.00 TGGRC033 236 237 1 0.02 TGGRC033 238 239 1 0.02 TGGRC033 239 240 1 0.04 TGGRC033 240 241 1 0.02 TGGRC033<						
TGGRC03322322410.03TGGRC03322422510.35TGGRC03322622711.36TGGRC03322622714.23TGGRC03322822914.23TGGRC03322923011.09TGGRC03323123210.77TGGRC03323223310.02TGGRC03323423510.03TGGRC03323523610.38TGGRC03323723810.28TGGRC03323924010.06TGGRC03323924010.02TGGRC03324024110.04TGGRC03324124210.02TGGRC03324324412.36andTGGRC03324424510.02TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324412.36TGGRC03324524610.02TGGRC03324524610.54		222	223	1		
TGGRC033 225 226 1 0.24 TGGRC033 226 227 1 1.36 TGGRC033 227 228 1 4.23 TGGRC033 229 230 1 1.09 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.77 TGGRC033 232 233 1 0.08 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 235 236 1 0.38 TGGRC033 235 236 1 0.28 TGGRC033 237 238 1 0.02 TGGRC033 239 240 1 0.06 TGGRC033 239 240 1 0.02 TGGRC033 240 241 1 0.02 TGGRC033 240 241 1 0.02 TGGRC033 241 242 1 0.02 TGGRC033<				1		
TGGRC033 226 227 1 1.36 TGGRC033 227 228 1 4.23 TGGRC033 228 229 1 4.23 TGGRC033 229 230 1 1.09 TGGRC033 230 231 1 0.50 TGGRC033 230 231 1 0.77 TGGRC033 232 233 1 0.08 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 235 236 1 0.38 TGGRC033 235 236 1 0.28 TGGRC033 237 238 1 0.02 TGGRC033 239 240 1 0.06 TGGRC033 240 241 1 0.02 TGGRC033 240 241 1 0.02 TGGRC033 240 241 1 0.02 TGGRC033 242 243 1 0.02 TGGRC033<	TGGRC033	224	225	1	0.35	
TGGRC03322722814.23TGGRC03322822914.23TGGRC03322923011.09TGGRC03323023110.50TGGRC03323123210.77TGGRC03323223310.08TGGRC03323423510.03TGGRC03323523610.38TGGRC03323723810.28TGGRC03323924010.06TGGRC03323924010.02TGGRC03324024110.04TGGRC03324124210.02TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324416.012TGGRC03324324410.02TGGRC03324324416.012TGGRC03324324416.02TGGRC03324324416.02TGGRC03324324416.02TGGRC03324424510.02TGGRC03324524610.54TGGRC03324524610.54	TGGRC033	225	226	1	0.24	
TGGRC033 228 229 1 4.23 TGGRC033 229 230 1 1.09 TGGRC033 230 231 1 0.50 TGGRC033 231 232 1 0.77 TGGRC033 232 233 1 0.08 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 235 236 1 0.38 TGGRC033 236 237 1 1.00 TGGRC033 237 238 1 0.28 TGGRC033 239 240 1 0.02 TGGRC033 239 240 1 0.06 TGGRC033 240 241 1 0.02 TGGRC033 240 241 1 0.02 TGGRC033 241 242 1 0.02 TGGRC033 241 242 1 0.02 TGGRC033 243 244 1 2.36 and	TGGRC033	226	227	1	1.36	
TGGRC033 229 230 1 1.09 TGGRC033 230 231 1 0.50 TGGRC033 231 232 1 0.77 TGGRC033 232 233 1 0.08 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 234 235 1 0.38 TGGRC033 236 237 1 1.00 TGGRC033 236 237 1 0.02 TGGRC033 237 238 1 0.28 TGGRC033 239 240 1 0.06 TGGRC033 239 240 1 0.02 TGGRC033 240 241 1 0.02 TGGRC033 241 242 1 0.02 TGGRC033 243 244 1 2.36 and TGGRC033 243 244 1 2.36 and TGGRC033 243 244 1 0.02	TGGRC033	227	228	1	4.23	
TGGRC033 230 231 1 0.50 TGGRC033 231 232 1 0.77 TGGRC033 232 233 1 0.08 TGGRC033 232 233 1 0.02 TGGRC033 234 235 1 0.03 TGGRC033 235 236 1 0.38 TGGRC033 237 238 1 0.28 TGGRC033 237 238 1 0.02 TGGRC033 239 240 1 0.06 TGGRC033 239 240 1 0.04 TGGRC033 240 241 1 0.02 TGGRC033 241 242 1 0.02 TGGRC033 241 242 1 0.02 TGGRC033 242 243 1 0.02 TGGRC033 242 243 1 0.02 243m-258m TGGRC033 244 245 1 0.02 243m-258m TGGRC033 245 246 1 <t< td=""><td>TGGRC033</td><td>228</td><td>229</td><td>1</td><td>4.23</td><td></td></t<>	TGGRC033	228	229	1	4.23	
TGGRC03323123210.77TGGRC03323223310.08TGGRC03323323410.02TGGRC03323423510.03TGGRC03323523610.38TGGRC03323623711.00TGGRC03323723810.28TGGRC03323823910.02TGGRC03323924010.06TGGRC03324024110.04TGGRC03324224310.02TGGRC03324224310.02TGGRC03324324412.36TGGRC03324324412.36TGGRC03324424510.02TGGRC03324424510.02TGGRC03324424510.62TGGRC03324524610.54TGGRC03324524610.54	TGGRC033	229	230	1	1.09	
TGGRC03323223310.08TGGRC03323323410.02TGGRC03323423510.03TGGRC03323523610.38TGGRC03323623711.00TGGRC03323723810.28TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324224310.02TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324412.36TGGRC03324324415.4TGGRC03324524610.54TGGRC03324524610.54	TGGRC033	230	231	1	0.50	
TGGRC03323323410.02TGGRC03323423510.03TGGRC03323523610.38TGGRC03323623711.00TGGRC03323723810.28TGGRC03323823910.02TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324324412.36TGGRC03324324412.36TGGRC03324424510.02TGGRC03324424510.54TGGRC03324524610.54TGGRC03324524610.54	TGGRC033	231	232	1	0.77	
TGGRC03323423510.03TGGRC03323523610.38TGGRC03323623711.00TGGRC03323723810.28TGGRC03323823910.02TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324124210.02TGGRC03324324412.36TGGRC03324324412.36TGGRC03324424510.02TGGRC03324424510.02TGGRC03324424510.54TGGRC03324524610.54	TGGRC033	232	233	1	0.08	
TGGRC03323523610.38TGGRC03323623711.00TGGRC03323723810.28TGGRC03323823910.02TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324124210.02TGGRC03324324412.36TGGRC03324324412.36TGGRC03324424510.02TGGRC03324424510.54TGGRC03324524610.54	TGGRC033	233	234	1	0.02	
TGGRC03323623711.00TGGRC03323723810.28TGGRC03323823910.02TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324224310.02TGGRC03324324412.36andTGGRC03324424510.02243m-258mTGGRC03324524610.5415m @ 1.6 gpt	TGGRC033	234	235	1	0.03	
TGGRC03323723810.28TGGRC03323823910.02TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324224310.02TGGRC03324324412.36TGGRC03324424510.02TGGRC03324424510.02TGGRC03324424510.02TGGRC03324524610.54TGGRC03324524610.54	TGGRC033	235	236	1	0.38	
TGGRC03323823910.02TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324224310.02TGGRC03324324412.36TGGRC03324424510.02TGGRC03324424510.02TGGRC03324424510.62TGGRC03324524610.54	TGGRC033	236	237	1	1.00	
TGGRC03323924010.06TGGRC03324024110.04TGGRC03324124210.02TGGRC03324224310.02TGGRC0332432441 2.36 andTGGRC03324424510.02243m-258mTGGRC03324524610.5415m @ 1.6 gpt	TGGRC033	237	238	1	0.28	
TGGRC03324024110.04TGGRC03324124210.02TGGRC03324224310.02TGGRC03324324412.36andTGGRC03324424510.02243m-258mTGGRC03324524610.5415m @ 1.6 gpt	TGGRC033	238	239	1	0.02	
TGGRC03324124210.02TGGRC03324224310.02TGGRC03324324412.36andTGGRC03324424510.02243m-258mTGGRC03324524610.5415m @ 1.6 gpt	TGGRC033	239	240	1	0.06	
TGGRC03324224310.02TGGRC0332432441 2.36 andTGGRC0332442451 0.02 243m-258mTGGRC0332452461 0.5415m @ 1.6 gpt	TGGRC033	240	241	1	0.04	
TGGRC0332432441 2.36 andTGGRC0332442451 0.02 243m-258mTGGRC0332452461 0.5415m@ 1.6 gpt	TGGRC033	241	242	1	0.02	
TGGRC03324424510.02243m-258mTGGRC03324524610.5415m @ 1.6 gpt	TGGRC033	242	243	1	0.02	
TGGRC033 245 246 1 0.54 15m @ 1.6 gpt	TGGRC033	243	244	1	2.36	and
TGGRC033 245 246 1 0.54 15m @ 1.6 gpt	TGGRC033	244	245	1	0.02	243m-258m
	TGGRC033	245	246	1		15m @ 1.6 gpt
	TGGRC033	246	247	1	1.53	

Hole No	From	То	Width (m)	Au (ppm)	Comment
TGGRC033	247	248	1	4.62	
TGGRC033	248	249	1	4.98	
TGGRC033	249	250	1	1.99	
TGGRC033	250	251	1	1.06	
TGGRC033	251	252	1	0.13	
TGGRC033	252	253	1	0.03	
TGGRC033	253	254	1	0.13	
TGGRC033	254	255	1	0.04	
TGGRC033	255	256	1	0.14	
TGGRC033	256	257	1	5.91	
TGGRC033	257	258	1	1.14	
TGGRC033	258	259	1	0.46	
TGGRC033	259	260	1	0.18	
TGGRC034	29	33	4	0.14	
TGGRC034	65	66	1	0.12	
TGGRC034	79	80	1	0.10	79m-159m
TGGRC034	80	81	1	0.23	80m @ 1.9 gpt
TGGRC034	81	82	1	5.08	inc
TGGRC034	82	83	1	6.92	81m-86m
TGGRC034	83	84	1	13.40	5m @ 6.0 gpt
TGGRC034	83	84	1	3.43	Sill @ 0.0 gpt
TGGRC034	85	85	1	1.02	
TGGRC034	86	80 87	1	0.44	
TGGRC034	87	88	1	0.06	
TGGRC034	88	89	1	0.19	00.00 07.00
TGGRC034	89	90	1	1.27	89m-97m
TGGRC034	90	91 02	1	2.40	8m @ 1.3 gpt
TGGRC034	91 02	92	1	1.31	
TGGRC034	92	93	1	1.10	
TGGRC034	93	94	1	1.25	
TGGRC034	94	95	1	0.66	
TGGRC034	95	96	1	1.56	
TGGRC034	96	97	1	1.06	
TGGRC034	97	98	1	0.77	
TGGRC034	98	99	1	0.19	
TGGRC034	99	100	1	0.39	
TGGRC034	100	101	1	5.72	100m-105m
TGGRC034	101	102	1	8.09	5m @ 4.9 gpt
TGGRC034	102	103	1	4.94	
TGGRC034	103	104	1	2.55	
TGGRC034	104	105	1	3.22	
TGGRC034	105	106	1	0.50	
TGGRC034	106	107	1	0.07	
TGGRC034	107	108	1	0.48	
TGGRC034	108	109	1	0.28	
TGGRC034	109	110	1	0.31	
TGGRC034	110	111	1	0.16	
TGGRC034	111	112	1	0.21	
TGGRC034	112	113	1	0.59	

Hole No	From	То	Width (m)	Au (ppm)	Comment
TGGRC034	113	114	1	2.12	113m-129m
TGGRC034	114	115	1	3.28	16m @ 3.8 gpt
TGGRC034	115	116	1	4.76	
TGGRC034	116	117	1	5.81	
TGGRC034	117	118	1	5.54	
TGGRC034	118	119	1	2.12	
TGGRC034	119	120	1	1.43	
TGGRC034	120	120	1	4.18	
TGGRC034	120	121	1	2.83	
TGGRC034	122	122	1	1.73	
TGGRC034	123	123	1	2.15	inc
TGGRC034	124	125	1	5.06	124m-129m
TGGRC034	125	125	1	8.78	5m @ 4.9 gpt
TGGRC034	126	120	1	4.09	511 @ 4.5 8pt
TGGRC034	127	128	1	2.70	
TGGRC034	128	120	1	3.63	
TGGRC034	120	130	1	0.92	
TGGRC034	130	130	1	1.78	
TGGRC034	130	131	1	0.12	
TGGRC034	131	132	1	0.12	
TGGRC034	132	133	1	0.28	
TGGRC034	133	134	1	0.32	
TGGRC034	134	135	1	0.13	
TGGRC034	135	130	1	0.28	
TGGRC034	130	137	1	0.22	
TGGRC034	137	138	1	0.12	
TGGRC034	138	139	1	0.00	
TGGRC034	139	140	1	0.02	
TGGRC034	140	141	1	0.10	
TGGRC034	142	143	1	0.00	
TGGRC034	142	143	1	0.05	
TGGRC034	143	145	1	0.15	
TGGRC034	144	145	1	2.38	145m-150m
TGGRC034	145	140	1	5.01	5m @ 2.6 gpt
TGGRC034	140	148	1	3.07	JIII @ 2.0 gpt
TGGRC034	148	149	1	0.70	
TGGRC034	148	145	1	2.00	
TGGRC034	145	150	1	0.52	
TGGRC034	150	151	1	0.52	
TGGRC034	151	152	1	0.12	
TGGRC034	152	153	1	0.11	
TGGRC034	155	154 155	1	0.18	
TGGRC034	154	155	1	0.19	
TGGRC034	155	150	1	0.43 1.04	
TGGRC034	150	157	1	0.20	
TGGRC034	157	158	1	0.20	
TGGRC034	158	162	1	0.90	
TGGRC034	171	162	1	0.19	
TGGRC034 TGGRC034	171	172	1	0.33	
10060034	1/2	1/3	T	0.40	

Hole No	From	То	Width (m)	Au (ppm)	Comment
TGGRC034	177	178	1	0.24	
TGGRC034	202	203	1	0.11	
TGGRC034	213	214	1	0.11	
TGGRC034	214	215	1	0.68	214m-218m
TGGRC034	215	216	1	1.84	4m @ 1.3 gpt
TGGRC034	216	217	1	2.22	
TGGRC034	217	218	1	0.58	
TGGRC034	218	219	1	0.15	
TGGRC034	219	220	1	0.11	
TGGRC034	227	228	1	0.12	
TGGRC034	229	230	1	0.29	
TGGRC034	247	248	1	0.17	
TGGRC034	250	251	1	0.16	
TGGRC034	251	252	1	0.13	
TGGRC034	253	254	1	0.17	

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	• This was a reverse circulation (RC) drilling programme. RC sample was collected through a rig mounted cyclone with cone splitter attachment and split in even metre intervals. Wet sample was speared or on occasion scoop-sampled. RC drill chips (from each metre interval) were examined visually and logged by the geologist. Any visual observation of alteration or of mineralisation was noted on the drill logs. Any interval where sulphides were observed was tested by hand-held XRF to assist in identifying intervals to be bagged and numbered for laboratory analysis.
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	• Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 10 samples). The Delta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule.
	• Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	• The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Reverse circulation holes were drilled by a truck-mounted Atlas-Copco E220RC rig with 1260cfm@365psi or 1050cpm@450psi compressor. The rig has a full lock-out isolation and emergency shut-out system.

S.11. 1		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	• Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Where moisture was encountered the sample recovery was still excellent, estimated at >80%.
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	• Samples were collected through a cyclone and split using a riffle splitter. One duplicate sample is submitted for every 10 samples.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• No evidence has been observed of a relationship between sample recovery and grade. The excellent sample recoveries obtained preclude any assumption of grain size bias.
Logging	Whether core and chip samples have been geologically	RC chips are logged visually by qualified geologists.
00 0	and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Lithology, and where possible structures, textures, colours, alteration types and minerals estimates, are recorded.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Representative chips are retained in trays for each metre interval drilled, with sections of interest photographed. The entire length of each drillhole is logged and evaluated.
Sub-sampling	• If core, whether cut or sawn and whether quarter, half or	Not core
techniques and sample preparation	all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	• Samples were collected through a rig-mounted cyclone and split using a riffle splitter. The majority of the samples obtained were sufficiently dry for this process to be effective. Material too moist for effective riffle splitting was sampled using a 4cm diameter spear. Each such sample submitted to the laboratory comprised three spear samples taken from different directions into the material for each
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 metre interval. The samples were sent to SGS in Perth for Au by 50g fire assay and a 49-element analysis by 4 acid digest. Sample preparation techniques are well-established standard industry best practice techniques. Drill chips and core are dried, crushed and pulverised (whole sample) to 85% of the sample passing -75µm grind size.
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	• Field QC procedures include using certified reference materials as assay standards. One duplicate sample is submitted for every 15 samples, approximately.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the grain size of 	 Evaluation of the standards, blanks and duplicate samples assays has fallen within acceptable limits of variability. Sample size follows industry standard best practice and is
Quality of	the material being sampled.	considered appropriate for these style(s) of mineralisation. • The assay techniques used for these assays are
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	international standard and can be considered total. Samples were dried, crushed and pulverised to 85% passing -75µm and assayed using ICP AES and ICP IMS following four-acid digest for the 49 element analyses; and Fire Assay for gold
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	following a four-acid digest in Teflon tubes of a 50g charge • The handheld XRF equipment used is an Olympus Delta XRF Analyser and Thundelarra follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Thundelarra uses the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay.
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The laboratory that carried out the assays is ISO certified and conducts its own internal QA/QC processes in addition to the QA/QC implemented by Thundelarra in the course of its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to complement the duplicate sampling procedures practiced by Thundelarra.

Verification	• The verification of significant intersections by either	All significant intersections are calculated and verified on
of sampling	independent or alternative company personnel.	screen and are reviewed by the CEO prior to reporting.
and assaying	The use of twinned holes.	• The programme included no twin holes.
	• Documentation of primary data, data entry procedures,	Data is collected and recorded initially on hand-written
	data verification, data storage (physical and electronic)	logs with summary data subsequently transcribed in the
	protocols.	field to electronic files that are then copied to head office.
	 Discuss any adjustment to assay data. 	 No adjustment to assay data has been needed.
Location of	Accuracy and quality of surveys used to locate drill holes	Collar locations were located and recorded using hand-
data points	(collar and down-hole surveys), trenches, mine workings and	held GPS (Garmin 62S model) with a typical accuracy of ±5m.
	other locations used in Mineral Resource estimation.	Down-hole surveys are carried out on each holes with
		readings taken every 50m at least using a gyro tool.
	• Specification of the grid system used.	• The map projection applicable to the area is Australian
		Geodetic GDA94, Zone 50.
	Quality and adequacy of topographic control.	Topographic control is based on standard industry
		practice of using the GPS readings. Local topography is
		relatively flat. Detailed altimetry is not warranted.
Data spacing	• Data spacing for reporting of Exploration Results.	Drill hole collars were located and oriented so as to
and		deliver maximum relevant geological information to allow
distribution		the geological model being tested to be assessed effectively.
	• Whether the data spacing and distribution is sufficient to	 This is still early stage exploration and is not sufficiently
	establish the degree of geological and grade continuity	advanced for this to be applicable.
	appropriate for the Mineral Resource and Ore Reserve	
	estimation procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	• Various composite sampling was applied depending on
		the geology of the hole. All sample intervals are reported in
		Appendix 1. Zones where geological logging and/or XRF
		analyses indicated the presence of mineralised intervals
		were sampled on one metre intervals.
Orientation	Whether the orientation of sampling achieves unbiased	• This drill programme is the second at the project. To date
of data in	sampling of possible structures and the extent to which this	there is insufficient data to establish true widths,
relation to	is known, considering the deposit type.	orientation of lithologies, relationships between lithologies,
geological	is known, considering the deposit type.	or the nature of any structural controls. The main aim of this
structure		programme is to generate geological data to develop an
Structure		understanding of these parameters.
	• If the relationship between the drilling orientation and	 Data collected so far presents no suggestion that any
	the orientation of key mineralised structures is considered	sampling bias has been introduced.
		sampling blas has been introduced.
	to have introduced a sampling bias, this should be assessed and reported if material.	
Sample	The measures taken to ensure sample security.	When all relevant intervals have been compled, the
Sample security	· me measures taken to ensure sample security.	When all relevant intervals have been sampled, the samples are collected and transported by Company
security		personnel to secure locked storage in Perth before delivery
Audits or	a The results of any audits or reviews of compling	by Company personnel to the laboratory for assay.
	The results of any audits or reviews of sampling techniques and data	Internal reviews are carried out regularly as a matter of action. All access requires are carried and to be representative
reviews	techniques and data.	policy. All assay results are considered to be representative
		as both the duplicates and standards from this programme
		have returned satisfactory replicated results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	• The Garden Gully Project comprises fourteen granted prospecting licences P51/2909, P51/2910, P51/2911, P51/2912, P51/2913, P51/2914, P51/2760, P51/2761, P51/2762, P51/2763, P51/2764, P51/2765, P51/2941, P51/2948, one granted exploration licence E51/1661, and one exploration licence application E51/1737, totalling approximately 65.5 square kilometres in area. THX holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA.

	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 First workings in the Garden Gully area: 1895 - 1901 with the Crown gold mine. 264 tonnes gold at 1.99 oz/t average (~ 56 g/t Au). Maximum depth~24m. Kyarra gold mine (1909 – 1917): 18,790 oz gold from quartz veins in "strongly sheared, decomposed, sericite rich country rock". Seltrust explored for Copper and Zinc from 1977, reporting stratigraphically controlled "gossanous" rock from chip sampling and drilling. In 1988, Dominion gold exploration at Crown defined a >100ppb gold soil anomaly. RAB to 32m: "no significant mineralisation": drilling was "sub-parallel to the dip of mineralisation". Best intersection: 15m at 2.38g/t from 5m. 1989 at Lydia: Julia Mines RAB drilled 30 m intervals 100m apart across the shear zone targeting the arsenic anomaly. 12m at 5.16 g/t Au from 18m; 6m at 3.04 g/t Au from 18m. No samples deeper than 24m due to poor recovery, so open at depth in the prospective shear zone. Julia also drilled shallow aircore at Crown mine, returned best intersection of 2m at 0.4g/t Au from 34m in quartz veins in felsic volcanics. In 1989, Matlock Mining explored North Granite Well and Nineteenth Hole. Best result 8m at 2.1 g/t Au. Supergene zone: grades to 3.17 g/t Au and still open. 1993 – 2003: St Barbara Mines: RAB, RC on E51/1661. Gold associated with black shale (best: 1m at 0.64 g/t). 1996, Australian Gold Resources RAB and RC drilling found Cu, Zn and Ag anomalies (up to 1800ppm Cu, 1650ppm Zn and 3.8 g/t Ag) associated with saprolitic clay and black shales at 60-80m deep on current E51/1661. 2001-2002, Gamen (Bellissimo & Red Bluff Noms) trenched, sampled, mapped and RC drilled at Crown. Results (up to 0.19 g/t Au) suggests the presence of gold mineralisation further to the east of Crown gold mine. 2008 – 2009: Accent defined targets N and S of Nineteenth
Geology	Deposit type, geological setting and style of mineralisation.	Hole from satellite imagery and airborne magnetics. - The Garden Gully project lies on the south-eastern limb of the Abbotts Greenstone Belt; comprised of Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The Project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully Drainage System. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes:	 All relevant drillhole details are presented in Table 3. The principal geologic conclusion of the work reported from this programme at the Lydia Prospect confirm the presence of significant widths of gold mineralisation with

	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	multiple periodic high grade gold intervals in what are interpreted to be plunging shoots. Extensive primary gold mineralisation is present below the base of oxidation. This primary mineralisation (often associated with sulphides as pyrite and arsenopyrite) offers an exceptionally positive outlook for the potential of the prospect to host gold mineralisation of commercial scale. The proof od such potential will be further tested in follow-up drilling, which will include diamond drilling to permit structural parameters to be identified and thus structural controls interptreted.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of 	 All summary information of significant drill intercepts is presented in Table 1. Full assay data are recorded in Appendix 1. No assay grades have been cut. Arithmetic weighted averages are used. For example,
	high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any reporting of metal	100m to 105m in TGGRC034 is reported as 5m at 4.9gpt Au. This comprised 5 samples, each of 1m, calculated as follows: [(1*5.72)+(1*8.09)+(1*4.94)+(1*2.55) +(1*3.22)] = [24.52/5] = 4.9 gpt Au. • No metal equivalent values are used.
Relationship between mineralisation widths and	 equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	• Insufficient geological data have yet been collected to allow the geometry of the mineralisation to be interpreted.
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 True widths are unknown and insufficient information is available yet to permit interpretation of geometry. Reported intercepts are downhole intercepts and are noted as such.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views. 	• Relevant location maps and figures are included in the body of this announcement (Figures 1 and 2). Insufficient data have yet been collected to allow meaningful cross-sections to be drawn with confidence.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• This announcement includes the results of all Au assays for the first six holes of the eight follow-up holes drilled at the Lydia Prospect. The assays for the last two holes are pending. The reporting of the results to hand is comprehensive and thus by definition balanced. It represents early results of a larger programme to investigate the possible mineralisation at Garden Gully.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the programme. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programmes.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations 	 Further deep RC drilling, together with diamond drilling to assist in structural interpretations, is planned to commence at Lydia as soon as practicable to test the potential for repetitions or continuations at depth of the primary gold mineralisation discovered in this programme. Figure 3 provides a broad overview of the potential geological targets at the Garden Gully Project that are still to
	and future drilling areas, provided this information is not commercially sensitive.	be tested by follow up drilling. Further details will be provided when available.

---00000----