

ASX/Media Announcement

28 June 2018

MORE VISIBLE SUPERGENE GOLD IN GARDEN GULLY AIR CORE DRILLING

Thundelarra is pleased to provide results from the air core drilling programme that successfully tested the potential for new zones of gold mineralisation at the Young, Lydia, Leanne, Ardeal and Transylvania prospects at our exciting Garden Gully gold project.

- 274 air core ("AC") holes drilled for 14,025m advance
- Native gold panned from 16-17m interval in TGGAC181
- Significant intersections (downhole widths true width unknown):

5m	at	6.9 gpt Au	from 14m in TGGAC181 (at Young);
5m	at	7.1 gpt Au	from 36m in TGGAC151 (at Lydia);
5m	at	4.0 gpt Au	from 60m in TGGAC152 (at Lydia);
10m	at	1.5 gpt Au	from 10m in TGGAC213 (at Transylvania);
25m	at	1.3 gpt Au	from 0m in TGGAC216 (at Transylvania);
5m	at	2.1 gpt Au	from 20m in TGGAC217 (at Transylvania);
5m	at	1.4 gpt Au	from 72m in TGGAC245 (at Transylvania).

Figure 1. Gold panned from ~3kg air core sample from 16-17m in TGGAC181: scale at left in mms.

Nineteen AC lines drilled at Young, Lydia, Ardeal, Leanne and Transylvania tested potential for gold mineralisation under areas with limited outcrop where traditional soil geochemistry targeting had proved ineffective. The programme was highly successful, identifying multiple follow-up gold targets associated with complex structural controls, as at Crown Prince.

THUNDELARRA LIMITED

Four Sub Audio Magnetic ("SAM") geophysical surveys were then carried out over these target areas. Results confirmed the targets are associated with intense structural complexities interpreted to be controls on the mineralisation already identified at the Crown Prince, Lydia, Transylvania and now Young prospects. These new targets are interpreted to represent potential repetitions of the mineralised shoots identified to date at the Garden Gully Project.

Figure 2. Garden Gully prospects on LandSat image. Figure 3. Garden Gully regional location.

The positions of the AC drill traverse lines are shown on Figure 2. Details of the individual hole parameters, including collar coordinates, are recorded in Appendix 2. Significant gold intersections are presented in Table 1 and all anomalous gold assays >0.1 ppm are reported in Appendix 3.

Hole No	From	То	Interval	Au (g/t)	Comments
TGGAC020	60m	51m	1m	2.4	Leanne
TGGAC065	19m	20m	1m	2.3	Ardeal
TGGAC066	16m	17m	1m	1.6	Ardeal
TGGAC138	64m	66m	2m	1.8	Lydia
TGGAC147	36m	40m	6m	1.4	Lydia
TGGAC148	51m	53m	3m	1.3	Lydia
TGGAC150	25m	28m	3m	1.2	Lydia
TGGAC151	36m	41m	5m	7.1	Lydia
TGGAC152	60m	65m	5m	4.0	Lydia
TGGAC153	75m	78m	3m	1.5	Lydia
TGGAC181	14m	19m	5m	6.9	Young
TGGAC181	32m	34m	2m	2.0	Young
TGGAC213	10m	20m	10m	1.5	Transylvania
TGGAC216	0m	25m	25m	1.3	Transylvania
TGGAC217	20m	25m	5m	2.1	Transylvania
TGGAC245	72m	77m	5m	1.4	Transylvania

Table 1. Significant intercepts from AC drill programme. Full assay data presented in Appendix 1.

THUNDELARRA LIMITED

Figure 4. AC drill hole distribution over the Garden Gully tenements with significant intercepts

Young Prospect

Two east-west trending AC lines (34 holes for 1,597m). TGGAC184 was designed to test at depth the supergene gold mineralisation present in the old diggings. A narrow zone was intersected within the weathering profile (18-19m: 1m at 3.3 gpt Au). TGGAC181 returned high gold grades between 14-19m with native gold been panned from the approximately 3kg sample from 16-17m (Figure 1). This inferred complex shear zone hosting the gold grades is located 150m WSW of the old diggings.

Fig 5. AC drill hole distribution over the SAM (MMC) image at the Young Prospect area

A subsequent SAM survey was undertaken and detailed mapping is now underway to understand the structural setting of the gold mineralisation. The conductive trends in Figure 5 are from magneto metric conductivity ("MMC") imaging derived from the ground SAM survey. Six potential gold targets were delineated, all located within structural intersections. Four small magnetic anomalies were also identified and will be investigated by detailed mapping. The inferred mineralised shear zone on the western end of the northernmost line is displayed in cross-section in Figure 6.

Figure 6. Cross section with gold intercepts on the northern line at Young Prospect

Transylvania Prospect

Six AC lines (68 holes for 3,862m) tested the bedrock under the shallow cover. Supergene gold mineralisation was intersected on the median part of three lines (Figure 8). Assay results are based on five-metre composites. Most of the intersections are within the weathering profile; the supergene gold values are sourced from two inferred sub-vertical shear zones located under the old diggings, as illustrated in the cross-section presented in Figure 7..

A SAM survey delineated multiple potential gold targets in areas of structural complexity (Figure 8). Ground mapping and further RC drilling followed by diamond tails are contemplated to follow up these new drill targets: the tenement shows potential for shallow supergene gold grades under very thin transported cover.

Figure 7. Cross section with gold intercepts on the central line at Transylvania Prospect

Figure 8. AC drill hole distribution at central part of Transylvania Prospect: SAM (MMC) image.

Lydia and Leanne Prospects

Six AC lines (74 holes for 4,291m) traversed the Lydia and Leanne prospects (Figure 9). Anomalous gold values were intercepted just south of the Lydia NW prospect and also on the central part of the line drilled at the newly-identified Leanne prospect. Multiple new gold targets were identified from the recent follow-up SAM survey: they are displayed in Figure 9 as yellow outlines.

As most of the previous drilling at Lydia NW was done west of the main mineralised shear and targeted at depth the primary shoots within this main structure, a decision was taken to drilled eight vertical AC holes into the main narrow shear (TGGAC147-154) to test the potential for gold mineralisation closer to surface. Figure 10 presents the resultant long section.

Figure 9. AC drill hole distribution at the Lydia and Leanne Prospects: SAM (MMC) image.

Gold mineralisation was intersected in six of the eight holes, showing that supergene gold is present into the saprolitic/generally depleted zone above the variable base of oxidation varying between 50m and 90m. High grade shoots including 36-41m: 5m at 7.1 gpt Au; and 60-66m: 6m at 3.4 gpt Au (including 5m at 4.0 from 60m) were intercepted in TGGAC151 and 153 (Figure 10).

Significant potential for additional gold resource is present within this 200m long structure which was previously drill-tested only below the base of oxidation. Recent SAM survey has delineated four more potential gold targets which will be tested as part of the next drill programme.

Figure 10. Long section through the weathering profile/saprolite zone along the Main Lydia Shear Zone

Ardeal Prospect

Six AC lines (98 holes for 4,275m) tested a strong magnetic target between the Crown Prince and Battery. Figure 11 shows the distribution of the AC drill holes on the total magnetic intensity (TMI) image. A complex lithological package was intersected consisting of mafic and ultramafic rocks with black shales and various quartz veins exhibiting elevated arsenic values. Assay results from the southern part of the prospect, where the intense magnetic anomaly appears to be dismantled by late structures, have returned several "spikes" in gold values. Follow-up work, to include detailed mapping, further SAM surveying, and deep RC drilling with diamond tails are warranted.

Two distinct black shale units, previously delineated by ground induced polarisation surveys, offer potential to host VHMS mineralisation. A high magnetic trend, inferred to be attributed to a thick ultramafic unit, should be tested at depth in the next exploration phase and consequently the western part of the Battery Prospect, untested by previous drilling and which appears to be linked with it this feature, will be targeted by further drilling.

THUNDELARRA LIMITED

Figure 11. AC drill hole distribution at the Ardeal Prospect: shown on the TMI image

About Garden Gully.

Thundelarra's wholly-owned Garden Gully project comprises 15 granted Prospecting Licences and 2 granted Exploration Licences covering about 78 square kilometres, located in Western Australia's Murchison region about 20 kilometres north-west of the town of Meekatharra, a well-established and proven gold endowment centre in Western Australia's Murchison Province that has delivered in excess of seven million ounces of gold production to date.

Thundelarra began exploration at Garden Gully in mid-2016 and continues to explore the project aggressively as we test the unquestioned potential of the exciting Garden Gully project.

For Further Information Contact:	THUNDELARRA LIMI	TED	ASX Code
Mr Tony Lofthouse - Chief Executive Officer	Quoted Shares:	635.1M	ТНХ
+61 8 9389 6927	Quoted Options:	109.3M	ТНХОВ

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears. Appendix 1: Laboratory assay results: Fire Assay 50g charge after Aqua Regia digest with ICP analysis.

Any intervals reporting gold content below 0.1 ppm (0.1 gpt) are not recorded in the following table, except as part of a longer interval of consecutive samples, where relevant.

Hole No	From	То	Width (m)	Au (ppm)	Prospect	Comments
TGGAC020	34	39	5	0.27	Leanne	
TGGAC020	37	38	1	1.00		1m @ 1.0 gpt from 37m
TGGAC020	38	39	1	0.14		
TGGAC020	49	50	1	0.31		
TGGAC020	50	51	1	2.35		1m @ 2.4 gpt from 50m
TGGAC023	52	55	3	0.18		
TGGAC023	55	58	3	0.13		
TGGAC052	20	23	3	0.33	Ardeal	
TGGAC052	23	24	1	0.32		
TGGAC052	23	29	6	0.13		
TGGAC052	24	25	1	0.17		
TGGAC052	25	26	1	0.12		
TGGAC052	45	46	1	0.20		
TGGAC052	45	49	4	0.15		
TGGAC052	46	47	1	0.11		
TGGAC052	47	48	1	0.35		
TGGAC065	13	18	5	0.15		
TGGAC065	13	14	1	0.15		
TGGAC065	14	15	1	0.74		
TGGAC065	15	16	1	0.22		
TGGAC065	19	22	3	0.82		
TGGAC065	19	20	1	2.25		1m @ 2.3 gpt from 19m
TGGAC065	24	25	1	0.75		
TGGAC065	25	26	1	0.13		
TGGAC065	26	27	1	1.08		1m @ 1.1 gpt from 26m
TGGAC065	27	28	1	0.72		
TGGAC065	29	30	1	0.23		
TGGAC066	2	3	1	0.42		
TGGAC066	3	4	1	0.30		
TGGAC066	4	6	2	0.15		
TGGAC066	6	9	3	0.34		
TGGAC066	13	15	2	0.11		
TGGAC066	16	17	1	1.63		1m @ 1.6 gpt from 16m
TGGAC066	18	19	1	0.32		
TGGAC066	19	22	3	0.12		
TGGAC066	23	24	1	0.26		
TGGAC066	24	27	3	0.13		
TGGAC066	42	44	2	0.17		
TGGAC066	67	68	1	0.54		
TGGAC066	68	69	1	0.74		
TGGAC066	69	70	1	0.15		
TGGAC069	36	42	6	0.48		
TGGAC070	16	19	3	0.22		
TGGAC076	11	15	4	0.13		
TGGAC089	1	7	6	0.14		

Hole No	From	То	Width (m)	Au (ppm)	Prospect	Comments
TGGAC116	49	50	1	0.16	Ardeal	
TGGAC116	50	51	1	0.13		
TGGAC116	51	52	1	0.11		
TGGAC116	52	53	1	0.11		
TGGAC116	53	54	1	0.10		
TGGAC116	54	56	2	0.25		
TGGAC117	35	37	2	0.11		
TGGAC125	21	23	2	0.10		
TGGAC132	0	2	2	0.10		
TGGAC135	4	6	2	0.16	Lydia NW	
TGGAC136	27	30	3	0.12		
TGGAC138	48	49	1	0.20		
TGGAC138	49	50	1	0.88		
TGGAC138	61	65	4	0.25		
TGGAC138	64	65	1	1.40		2m @ 1.8 gpt from 64m
TGGAC138	65	66	1	2.13		
TGGAC138	66	68	2	0.19		
TGGAC138	66	67	1	0.18		
TGGAC138	67	68	1	0.24		
TGGAC139	53	58	5	0.11		
TGGAC139	55	56	1	0.11		
TGGAC139	56	57	1	0.06		
TGGAC139	57	58	1	0.18		
TGGAC139	58	59	1	0.66		
TGGAC139	59	60	1	0.70		
TGGAC141	53	55	2	0.26		
TGGAC147	0	3	3	0.18		
TGGAC147	3	4	1	0.20		
TGGAC147	4	5	1	0.17		
TGGAC147	7	8	1	0.15		
TGGAC147	15	16	1	0.11		
TGGAC147	24	29	5	0.11		
TGGAC147	32	33	1	0.52		
TGGAC147	35	36	1	0.13		
TGGAC147	36	37	1	2.75		6m @ 1.4 gpt from 36m
TGGAC147	37	38	1	0.33		
TGGAC147	38	39	1	0.25		
TGGAC147	39	40	1	2.96		
TGGAC147	40	41	1	1.43		
TGGAC147	41	42	1	0.47		
TGGAC147	42	43	1	0.20		
TGGAC147	43	44	1	0.02		
TGGAC147	44	45	1	1.28		1m @ 1.3 gpt from 44m
TGGAC147	45	46	1	0.49		
TGGAC147	48	49	1	0.10		
TGGAC147	49	50	1	1.02		1m @ 1.0 gpt from 49m
TGGAC147	50	51	1	0.75		
TGGAC147	51	52	1	0.08		
TGGAC147	52	53	1	0.16		

Hole No	From	То	Width (m)	Au (ppm)	Prospect	Comments
TGGAC147	53	54	1	1.08	Lydia NW	1m @ 1.1 gpt from 53m
TGGAC148	0	6	6	0.11		
TGGAC148	22	23	1	0.21		
TGGAC148	32	33	1	0.17		
TGGAC148	33	34	1	0.63		
TGGAC148	34	35	1	0.08		
TGGAC148	35	36	1	0.44		
TGGAC148	36	37	1	0.12		
TGGAC148	37	38	1	0.01		
TGGAC148	38	39	1	0.01		
TGGAC148	39	40	1	0.31		
TGGAC148	40	41	1	0.21		
TGGAC148	48	49	1	0.73		
TGGAC148	49	50	1	0.34		
TGGAC148	50	51	1	0.47		
TGGAC148	51	52	1	1.22		2m @ 1.3 gpt from 51m
TGGAC148	52	53	1	1.41		
TGGAC148	53	54	1	0.37		
TGGAC148	54	55	1	0.12		
TGGAC148	59	60	1	0.10		
TGGAC148	65	66	1	0.27		
TGGAC148	72	73	1	0.13		
TGGAC148	74	75	1	0.28		
TGGAC150	18	22	4	0.12		
TGGAC150	22	23	1	0.13		
TGGAC150	23	24	1	0.01		
TGGAC150	24	25	1	0.22		
TGGAC150	25	26	1	0.97		3m @ 1.2 gpt from 25m
TGGAC150	26	27	1	0.09		
TGGAC150	27	28	1	2.51		
TGGAC150	29	30	1	0.52		
TGGAC151	12	18	6	0.15		
TGGAC151	36	37	1	30.70		5m @ 7.1 gpt from 36m
TGGAC151	37	38	1	2.28		
TGGAC151	38	39	1	1.12		
TGGAC151	39	40	1	1.17		
TGGAC151	40	41	1	0.10		
TGGAC152	60	61	1	4.28		5m @ 4.0 gpt from 60m
TGGAC152	61	62	1	12.50		
TGGAC152	62	63	1	0.88		
TGGAC152	63	64	1	0.97		
TGGAC152	64	65	1	1.28		
TGGAC152	65	66	1	0.39		
TGGAC152	66	70	4	0.10		
TGGAC152	80	81	1	0.43		
TGGAC152	84	85	1	0.12		
TGGAC153	39	40	1	0.23		
TGGAC153	40	41	1	0.14		
TGGAC153	75	76	1	0.44		3m @ 1.5 gpt from 75m

Hole No	From	То	Width (m)	Au (ppm)	Prospect	Comments
TGGAC153	76	77	1	3.62	Lydia NW	
TGGAC153	77	78	1	0.55		
TGGAC180	32	33	1	0.22	Young	
TGGAC180	33	34	1	0.30		
TGGAC180	34	35	1	0.94		1m @ 0.9 gpt from 34m
TGGAC180	44	45	1	0.22		
TGGAC181	14	15	1	1.98		5m @ 6.9 gpt from 14m
TGGAC181	15	16	1	1.27		
TGGAC181	16	17	1	28.00		
TGGAC181	17	18	1	1.50		
TGGAC181	18	19	1	1.62		
TGGAC181	19	20	1	0.28		
TGGAC181	20	21	1	0.10		
TGGAC181	21	22	1	0.17		
TGGAC181	23	24	1	0.14		
TGGAC181	29	30	1	0.13		
TGGAC181	30	31	1	0.16		
TGGAC181	31	32	1	0.26		
TGGAC181	32	33	1	1.15		2m @ 2.0 gpt from 32m
TGGAC181	33	34	1	2.89		
TGGAC181	34	35	1	0.19		
TGGAC182	32	33	1	0.63		
TGGAC182	33	34	1	0.18		
TGGAC183	22	23	1	0.18		
TGGAC183	24	25	1	0.21		
TGGAC184	18	19	1	3.27		1m @ 3.3 gpt from 18m
TGGAC184	61	62	1	0.18		
TGGAC213	10	15	5	0.57	Transylvania	10m @ 1.5 gpt from 10m
TGGAC213	15	20	5	2.49		
TGGAC213	20	25	5	0.45		
TGGAC213	25	30	5	0.15		
TGGAC213	30	35	5	0.11		
TGGAC213	45	51	6	0.12		
TGGAC214	10	15	5	0.11		
TGGAC214	25	30	5	0.90		5m @ 0.9 gpt from 25m
TGGAC214	35	40	5	0.54		
TGGAC215	0	5	5	0.34		
TGGAC215	5	10	5	0.16		
TGGAC215	10	15	5	0.10		
TGGAC215	15	20	5	0.15		
TGGAC215	45	50	5	0.51		
TGGAC215	70	75	5	0.26		
TGGAC216	0	5	5	1.43		25m @ 1.3 gpt from 0m
TGGAC216	5	10	5	1.92		
TGGAC216	10	15	5	1.25		
TGGAC216	15	20	5	0.42		
TGGAC216	20	25	5	1.62		
TGGAC216	30	35	5	0.19		
TGGAC216	35	40	5	0.21		

Hole No	From	То	Width (m)	Au (ppm)	Prospect	Comments
TGGAC216	40	45	5	0.15	Transylvania	
TGGAC217	20	25	5	2.05		5m @ 2.1 gpt from 20m
TGGAC217	25	30	5	0.11		
TGGAC217	70	74	4	0.35		
TGGAC218	44	49	5	0.18		
TGGAC233	10	15	5	0.49		15m @ 0.6 gpt from 10m
TGGAC233	15	20	5	0.59		
TGGAC233	20	25	5	0.63		
TGGAC234	38	42	4	0.12		
TGGAC243	26	31	5	0.25		
TGGAC244	23	28	5	0.14		
TGGAC244	48	53	5	0.60		
TGGAC245	72	77	5	1.41		5m @ 1.4 gpt from 72m
TGGAC246	67	72	5	0.50		
TGGAC246	72	77	5	0.27		
TGGAC246	77	82	5	0.18		
TGGAC246	87	90	3	0.32		
TGGAC274	13	15	2	0.12		
TGGAC274	20	25	5	0.50		5m @ 0.5 gpt from 20m

Appendix 2. Air core drill hole details. All holes drilled on Grid MGA94-50. Ground is sufficiently flat to allow consistent use of RL480m.

Hole ID	Depth	Dip	Azimuth	East	North	Prospect	Lease ID
TGGAC001	69	-60	90	644216	7072952	Lydia NW	P51/2762
TGGAC002	56	-60	90	644196	7072955	Lydia NW	P51/2762
TGGAC003	68	-60	90	644177	7072956	Lydia NW	P51/2762
TGGAC004	78	-60	90	644149	7072943	Lydia NW	P51/2762
TGGAC005	90	-60	90	644115	7072950	Lydia NW	P51/2762
TGGAC006	83	-60	90	644084	7072945	Lydia NW	P51/2762
TGGAC007	107	-60	90	644060	7072949	Lydia NW	P51/2762
TGGAC008	57	-60	90	644025	7072948	Lydia NW	P51/2762
TGGAC009	68	-60	90	644555	7072211	Leanne	P51/2909
TGGAC010	27	-60	90	644524	7072211	Leanne	P51/2909
TGGAC011	27	-60	90	644535	7072211	Leanne	P51/2909
TGGAC012	32	-60	90	644506	7072203	Leanne	P51/2909
TGGAC013	45	-60	90	644487	7072203	Leanne	P51/2909
TGGAC014	57	-60	90	644465	7072202	Leanne	P51/2909
TGGAC015	36	-60	90	644439	7072204	Leanne	E51/1661
TGGAC016	40	-60	90	644419	7072205	Leanne	E51/1661
TGGAC017	23	-60	90	644401	7072208	Leanne	E51/1661
TGGAC018	62	-60	90	644379	7072204	Leanne	E51/1661
TGGAC019	86	-60	90	644354	7072205	Leanne	E51/1661
TGGAC020	60	-60	90	644326	7072204	Leanne	E51/1661
TGGAC021	53	-60	90	644302	7072203	Leanne	E51/1661
TGGAC022	59	-60	90	644275	7072206	Leanne	E51/1661
TGGAC023	74	-60	90	644258	7072204	Leanne	E51/1661
TGGAC024	29	-60	90	644234	7072206	Leanne	E51/1661
TGGAC025	24	-60	90	644212	7072206	Leanne	E51/1661
TGGAC026	34	-60	90	644955	7072287	Leanne	P51/2909
TGGAC027	47	-60	90	644936	7072285	Leanne	P51/2909
TGGAC028	46	-60	90	644913	7072287	Leanne	P51/2909
TGGAC029	48	-60	90	644895	7072287	Leanne	P51/2909
TGGAC030	60	-60	90	644875	7072288	Leanne	P51/2909
TGGAC031	73	-60	90	644853	7072291	Leanne	P51/2909
TGGAC032	78	-60	90	644825	7072299	Leanne	P51/2909
TGGAC033	74	-60	90	644796	7072308	Leanne	P51/2909
TGGAC034	50	-60	90	644767	7072313	Leanne	P51/2909
TGGAC035	50	-60	90	644747	7072316	Leanne	P51/2909
TGGAC036	41	-60	90	644725	7072319	Leanne	P51/2909
TGGAC037	23	-60	90	646032	7072146	Ardeal	P51/2765
TGGAC038	39	-60	90	646009	7072148	Ardeal	P51/2765
TGGAC039	34	-60	90	645990	7072151	Ardeal	P51/2765
TGGAC040	28	-60	90	645970	7072156	Ardeal	P51/2765
TGGAC041	26	-60	90	645947	7072156	Ardeal	P51/2765

Hole ID	Depth	Dip	Azimuth	East	North	Prospect	Lease ID
TGGAC042	48	-60	90	645929	7072160	Ardeal	P51/2765
TGGAC043	11	-60	90	645910	7072161	Ardeal	P51/2765
TGGAC044	12	-60	90	645921	7072160	Ardeal	P51/2765
TGGAC045	15	-60	90	645896	7072162	Ardeal	P51/2765
TGGAC046	33	-60	90	645875	7072163	Ardeal	P51/2765
TGGAC047	55	-60	90	645856	7072167	Ardeal	P51/2765
TGGAC048	62	-60	90	645831	7072168	Ardeal	P51/2765
TGGAC049	24	-60	90	645813	7072170	Ardeal	P51/2765
TGGAC050	50	-60	90	645792	7072176	Ardeal	P51/2765
TGGAC051	25	-60	90	645758	7072180	Ardeal	P51/2765
TGGAC052	49	-60	90	645740	7072182	Ardeal	P51/2765
TGGAC053	79	-60	90	645721	7072181	Ardeal	P51/2765
TGGAC054	90	-60	90	645690	7072186	Ardeal	P51/2765
TGGAC055	79	-60	90	645657	7072191	Ardeal	P51/2765
TGGAC056	48	-60	90	645627	7072194	Ardeal	P51/2765
TGGAC057	75	-60	90	645611	7072196	Ardeal	P51/2765
TGGAC058	69	-60	90	645578	7072199	Ardeal	P51/2765
TGGAC059	32	-60	90	645548	7072204	Ardeal	P51/2765
TGGAC060	4	-60	90	645530	7072205	Ardeal	P51/2765
TGGAC061	34	-60	90	645940	7072299	Ardeal	P51/2765
TGGAC062	32	-60	90	645917	7072299	Ardeal	P51/2765
TGGAC063	47	-60	90	645898	7072302	Ardeal	P51/2765
TGGAC064	73	-60	90	645880	7072303	Ardeal	P51/2765
TGGAC065	68	-60	90	645849	7072306	Ardeal	P51/2765
TGGAC066	120	-60	90	645820	7072306	Ardeal	P51/2765
TGGAC067	54	-60	90	645788	7072304	Ardeal	P51/2765
TGGAC068	91	-60	90	645766	7072302	Ardeal	P51/2765
TGGAC069	65	-60	90	645736	7072299	Ardeal	P51/2765
TGGAC070	79	-60	90	645809	7072302	Ardeal	P51/2765
TGGAC071	70	-60	90	645721	7072301	Ardeal	P51/2765
TGGAC072	12	-60	90	645696	7072299	Ardeal	P51/2765
TGGAC073	45	-60	90	645679	7072297	Ardeal	P51/2765
TGGAC074	50	-60	90	645658	7072301	Ardeal	P51/2765
TGGAC075	1	-60	90	645638	7072302	Ardeal	P51/2765
TGGAC076	60	-60	90	645650	7072301	Ardeal	P51/2765
TGGAC077	1	-60	90	645623	7072300	Ardeal	P51/2765
TGGAC078	1	-60	90	645600	7072301	Ardeal	P51/2765
TGGAC079	2	-60	90	645576	7072303	Ardeal	P51/2765
TGGAC080	5	-60	90	645555	7072303	Ardeal	P51/2765
TGGAC081	4	-60	90	645534	7072299	Ardeal	P51/2765
TGGAC082	19	-60	90	646048	7072919	Ardeal	P51/2909
TGGAC083	31	-60	90	646037	7072917	Ardeal	P51/2909
TGGAC084	43	-60	90	646018	7072914	Ardeal	P51/2909
TGGAC085	42	-60	90	645999	7072911	Ardeal	P51/2909
TGGAC086	39	-60	90	645976	7072907	Ardeal	P51/2909

Hole ID	Depth	Dip	Azimuth	East	North	Prospect	Lease ID
TGGAC087	62	-60	90	645963	7072902	Ardeal	P51/2909
TGGAC088	25	-60	90	645948	7072898	Ardeal	P51/2909
TGGAC089	71	-60	90	645927	7072900	Ardeal	P51/2909
TGGAC090	84	-60	90	645899	7072905	Ardeal	P51/2909
TGGAC091	51	-60	90	645872	7072908	Ardeal	P51/2909
TGGAC092	17	-60	90	645852	7072912	Ardeal	P51/2909
TGGAC093	45	-60	90	645861	7072913	Ardeal	P51/2909
TGGAC094	68	-60	90	645830	7072917	Ardeal	P51/2909
TGGAC095	15	-60	90	645810	7072924	Ardeal	P51/2909
TGGAC096	24	-60	90	645788	7072924	Ardeal	P51/2909
TGGAC097	3	-60	90	645766	7072926	Ardeal	P51/2909
TGGAC098	6	-60	90	645764	7072920	Ardeal	P51/2909
TGGAC099	52	-60	90	645964	7072722	Ardeal	P51/2909
TGGAC100	72	-60	90	645941	7072714	Ardeal	P51/2909
TGGAC101	58	-60	90	645924	7072708	Ardeal	P51/2909
TGGAC102	89	-60	90	645901	7072709	Ardeal	P51/2909
TGGAC103	59	-60	90	645871	7072704	Ardeal	P51/2909
TGGAC104	39	-60	90	645848	7072703	Ardeal	P51/2909
TGGAC105	53	-60	90	645828	7072701	Ardeal	P51/2909
TGGAC106	80	-60	90	645807	7072700	Ardeal	P51/2909
TGGAC107	48	-60	90	645784	7072695	Ardeal	P51/2909
TGGAC108	21	-60	90	645766	7072696	Ardeal	P51/2909
TGGAC109	16	-60	90	645748	7072696	Ardeal	P51/2909
TGGAC110	25	-60	90	645976	7072539	Ardeal	P51/2765
TGGAC111	44	-60	90	645955	7072546	Ardeal	P51/2765
TGGAC112	48	-60	90	645938	7072547	Ardeal	P51/2765
TGGAC113	43	-60	90	645905	7072556	Ardeal	P51/2765
TGGAC114	28	-60	90	645883	7072549	Ardeal	P51/2765
TGGAC115	45	-60	90	645869	7072555	Ardeal	P51/2765
TGGAC116	63	-60	90	645849	7072557	Ardeal	P51/2765
TGGAC117	65	-60	90	645823	7072561	Ardeal	P51/2765
TGGAC118	27	-60	90	645803	7072563	Ardeal	P51/2765
TGGAC119	54	-60	90	645815	7072563	Ardeal	P51/2765
TGGAC120	51	-60	90	645788	7072562	Ardeal	P51/2765
TGGAC121	8	-60	90	645767	7072555	Ardeal	P51/2765
TGGAC122	32	-60	90	645994	7072449	Ardeal	P51/2765
TGGAC123	30	-60	90	645979	7072454	Ardeal	P51/2765
TGGAC124	34	-60	90	645954	7072456	Ardeal	P51/2765
TGGAC125	44	-60	90	645930	7072459	Ardeal	P51/2765
TGGAC126	66	-60	90	645902	7072458	Ardeal	P51/2765
TGGAC127	34	-60	90	645882	7072458	Ardeal	P51/2765
TGGAC128	30	-60	90	645862	7072460	Ardeal	P51/2765
TGGAC129	36	-60	90	645844	7072459	Ardeal	P51/2765
TGGAC130	28	-60	90	645822	7072456	Ardeal	P51/2765
TGGAC131	120	-60	90	645799	7072456	Ardeal	P51/2765

Hole ID	Depth	Dip	Azimuth	East	North	Prospect	Lease ID
TGGAC132	77	-60	90	645773	7072452	Ardeal	P51/2765
TGGAC133	43	-60	90	645747	7072460	Ardeal	P51/2765
TGGAC134	44	-60	90	645738	7072465	Ardeal	P51/2765
TGGAC135	57	-60	90	644297	7072643	Lydia NW	P51/2909
TGGAC136	53	-60	90	644279	7072644	Lydia NW	E51/1661
TGGAC137	67	-60	90	644263	7072642	Lydia NW	E51/1661
TGGAC138	75	-60	90	644244	7072638	Lydia NW	E51/1661
TGGAC139	72	-60	90	644222	7072638	Lydia NW	E51/1661
TGGAC140	54	-60	90	644203	7072638	Lydia NW	E51/1661
TGGAC141	59	-60	90	644181	7072637	Lydia NW	E51/1661
TGGAC142	36	-60	90	644162	70726	Lydia NW	E51/1661
TGGAC143	27	-60	90	644140	7072638	Lydia NW	E51/1661
TGGAC144	40	-60	90	644120	7072639	Lydia NW	E51/1661
TGGAC145	35	-60	90	644098	7072641	Lydia NW	P51/2762
TGGAC146	37	-60	90	644081	7072640	Lydia NW	P51/2762
TGGAC147	54	-90	0	644343	7072938	Lydia NW	P51/2909
TGGAC148	91	-90	0	644333	7072910	Lydia NW	P51/2909
TGGAC149	47	-90	0	644319	7072880	Lydia NW	P51/2909
TGGAC150	40	-90	0	644308	7072855	Lydia NW	P51/2909
TGGAC151	64	-90	0	644302	7072831	Lydia NW	P51/2909
TGGAC152	90	-90	0	644292	7072802	Lydia NW	P51/2909
TGGAC153	84	-90	0	644293	7072777	Lydia NW	P51/2909
TGGAC154	28	-90	0	644287	7072749	Lydia NW	P51/2909
TGGAC155	90	-90	0	645018	7073001	Lydia East	P51/2909
TGGAC156	105	-60	90	644985	7073005	Lydia East	P51/2909
TGGAC157	52	-60	90	644966	7073002	Lydia East	P51/2909
TGGAC158	56	-60	90	644935	7073000	Lydia East	P51/2909
TGGAC159	94	-60	90	644909	7072999	Lydia East	P51/2909
TGGAC160	70	-60	90	644879	7072995	Lydia East	P51/2909
TGGAC161	62	-60	90	644851	7072997	Lydia East	P51/2909
TGGAC162	55	-60	90	644820	7073000	Lydia East	P51/2909
TGGAC163	49	-60	90	644796	7073000	Lydia East	P51/2909
TGGAC164	76	-60	90	644770	7072997	Lydia East	P51/2909
TGGAC165	65	-60	90	644743	7072999	Lydia East	P51/2909
TGGAC166	56	-60	90	644710	7073005	Lydia East	P51/2909
TGGAC167	64	-60	90	644683	7073004	Lydia East	P51/2909
TGGAC168	56	-60	90	644649	7073001	Lydia East	P51/2909
TGGAC169	57	-60	90	644623	7073000	Lydia East	P51/2909
TGGAC170	62	-60	90	644593	7072999	Lydia East	P51/2909
TGGAC171	51	-60	90	644571	7073000	Lydia East	P51/2909
TGGAC172	50	-60	90	644548	7073002	Lydia East	P51/2909
TGGAC173	37	-60	90	646024	7077408	Young	P51/2948
TGGAC174	45	-60	90	646011	7077409	Young	P51/2948
TGGAC175	44	-60	90	645989	7077406	Young	P51/2948
TGGAC176	37	-60	90	645968	7077405	Young	P51/2948

Hole ID	Depth	Dip	Azimuth	East	North	Prospect	Lease ID
TGGAC177	40	-60	90	645949	7077405	Young	P51/2948
TGGAC178	40	-60	90	645929	7077400	Young	P51/2948
TGGAC179	46	-60	90	645911	7077399	Young	P51/2948
TGGAC180	53	-60	90	645891	7077398	Young	P51/2948
TGGAC181	38	-60	90	645865	7077396	Young	P51/2948
TGGAC182	35	-60	90	645844	7077395	Young	P51/2948
TGGAC183	43	-60	90	645825	7077390	Young	P51/2948
TGGAC184	73	-60	50	646019	7077471	Young	P51/2948
TGGAC185	49	-60	90	646117	7077051	Young	E51/1661
TGGAC186	51	-60	90	646096	7077050	Young	E51/1661
TGGAC187	50	-60	90	646073	7077047	Young	E51/1661
TGGAC188	37	-60	90	646054	7077043	Young	E51/1661
TGGAC189	44	-60	90	646036	7077039	Young	E51/1661
TGGAC190	31	-60	90	646016	7077038	Young	E51/1661
TGGAC191	37	-60	90	645994	7077041	Young	E51/1661
TGGAC192	41	-60	90	645980	7077039	Young	E51/1661
TGGAC193	38	-60	90	645963	7077038	Young	E51/1661
TGGAC194	48	-60	90	645940	7077038	Young	E51/1661
TGGAC195	46	-60	90	645922	7077039	Young	E51/1661
TGGAC196	48	-60	90	645903	7077033	Young	E51/1661
TGGAC197	48	-60	90	645884	7077032	Young	E51/1661
TGGAC198	44	-60	90	645866	7077033	Young	E51/1661
TGGAC199	47	-60	90	645847	7077027	Young	E51/1661
TGGAC200	48	-60	90	645828	7077031	Young	E51/1661
TGGAC201	62	-60	90	645801	7077038	Young	E51/1661
TGGAC202	59	-60	90	645784	7077042	Young	E51/1661
TGGAC203	67	-60	90	645767	7077041	Young	E51/1661
TGGAC204	57	-60	90	645747	7077041	Young	E51/1661
TGGAC205	48	-60	90	645727	7077040	Young	E51/1661
TGGAC206	66	-60	90	645711	7077039	Young	E51/1661
TGGAC207	47	-60	270	644559	7069280	Transylvania	P51/2911
TGGAC208	73	-60	270	644581	7069278	Transylvania	P51/2911
TGGAC209	63	-60	270	644598	7069278	Transylvania	P51/2911
TGGAC210	63	-60	270	644617	7069280	Transylvania	P51/2911
TGGAC211	55	-60	270	644639	7069285	Transylvania	P51/2911
TGGAC212	53	-60	270	644657	7069285	Transylvania	P51/2911
TGGAC213	51	-60	90	644661	7069270	Transylvania	P51/2911
TGGAC214	55	-60	90	644646	7069277	Transylvania	P51/2911
TGGAC215	93	-60	270	644691	7069280	Transylvania	P51/2911
TGGAC216	72	-60	270	644711	7069279	Transylvania	P51/2911
TGGAC217	74	-60	270	644729	7069281	Transylvania	P51/2911
TGGAC218	87	-60	270	644745	7069273	Transylvania	P51/2911
TGGAC219	76	-60	270	644764	7069265	Transylvania	P51/2911
TGGAC220	45	-60	90	644824	7069456	Transylvania	P51/2911
TGGAC221	64	-60	90	644802	7069460	Transylvania	P51/2911

Hole ID	Depth	Dip	Azimuth	East	North	Prospect	Lease ID
TGGAC222	58	-60	90	644780	7069460	Transylvania	P51/2911
TGGAC223	72	-60	90	644764	7069460	Transylvania	P51/2911
TGGAC224	72	-60	90	644739	7069457	Transylvania	P51/2911
TGGAC225	32	-60	90	644720	7069454	Transylvania	P51/2911
TGGAC226	51	-60	90	644704	7069450	Transylvania	P51/2911
TGGAC227	36	-60	90	644679	7069448	Transylvania	P51/2911
TGGAC228	25	-60	90	644658	7069451	Transylvania	P51/2911
TGGAC229	20	-60	90	644638	7069452	Transylvania	P51/2911
TGGAC230	30	-60	90	644621	7069456	Transylvania	P51/2911
TGGAC231	32	-60	90	644606	7069459	Transylvania	P51/2911
TGGAC232	21	-60	90	644583	7069459	Transylvania	P51/2911
TGGAC233	47	-60	90	644419	7068390	Transylvania	P51/2912
TGGAC234	60	-60	90	644402	7068397	Transylvania	P51/2912
TGGAC235	49	-60	90	644380	7068405	Transylvania	P51/2912
TGGAC236	61	-60	90	644362	7068407	Transylvania	P51/2912
TGGAC237	54	-60	90	644340	7068409	Transylvania	P51/2912
TGGAC238	60	-60	90	644319	7068411	Transylvania	P51/2912
TGGAC239	75	-60	90	644574	7068655	Transylvania	P51/2912
TGGAC240	84	-60	90	644554	7068650	Transylvania	P51/2912
TGGAC241	78	-60	90	644525	7068649	Transylvania	P51/2912
TGGAC242	36	-60	90	644498	7068641	Transylvania	P51/2912
TGGAC243	71	-60	90	644482	7068640	Transylvania	P51/2912
TGGAC244	63	-60	90	644462	7068645	Transylvania	P51/2912
TGGAC245	87	-60	90	644441	7068643	Transylvania	P51/2912
TGGAC246	90	-60	90	644418	7068641	Transylvania	P51/2912
TGGAC247	41	-60	90	644400	7068647	Transylvania	P51/2912
TGGAC248	102	-60	90	644362	7068651	Transylvania	P51/2912
TGGAC249	113	-60	90	644381	7068652	Transylvania	P51/2912
TGGAC250	96	-60	90	644343	7068655	Transylvania	P51/2912
TGGAC251	49	-60	90	645395	7069502	Transylvania	P51/2911
TGGAC252	53	-60	90	645379	7069499	Transylvania	P51/2911
TGGAC253	70	-60	90	645355	7069488	Transylvania	P51/2911
TGGAC254	68	-60	90	645329	7069493	Transylvania	P51/2911
TGGAC255	40	-60	90	645307	7069503	Transylvania	P51/2911
TGGAC256	35	-60	90	645280	7069524	Transylvania	P51/2911
TGGAC257	33	-60	90	645263	7069536	Transylvania	P51/2911
TGGAC258	32	-60	90	645242	7069539	Transylvania	P51/2911
TGGAC259	23	-60	90	645209	7069540	Transylvania	P51/2911
TGGAC260	18	-60	90	645188	7069550	Transylvania	P51/2911
TGGAC261	27	-60	90	645167	7069554	Transylvania	P51/2911
TGGAC262	27	-60	90	645147	7069550	Transylvania	P51/2911
TGGAC263	33	-60	90	645129	7069549	Transylvania	P51/2911
TGGAC264	11	-60	90	645101	7069546	Transylvania	P51/2911
TGGAC265	19	-60	90	645081	7069547	Transylvania	P51/2911
TGGAC266	29	-60	90	645061	7069556	Transylvania	P51/2911

Hole ID	Depth	Dip	Azimuth	East	North	Prospect	Lease ID
TGGAC267	31	-60	90	645040	7069569	Transylvania	P51/2911
TGGAC268	90	-60	90	644338	7067657	Transylvania	P51/2912
TGGAC269	59	-60	90	644318	7067657	Transylvania	P51/2912
TGGAC270	96	-60	90	644293	7067653	Transylvania	P51/2912
TGGAC271	111	-60	90	644281	7067668	Transylvania	P51/2912
TGGAC272	75	-60	90	644267	7067666	Transylvania	P51/2912
TGGAC273	87	-60	90	644240	7067666	Transylvania	P51/2912
TGGAC274	59	-60	90	644217	7067662	Transylvania	P51/2912

Appendix 3: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry' 	 This was an air core (AC) drilling programme. AC samples consist of 5m, 4m, 3m, 2m and 1m composite spear samples from 1msample piles. The sampling intervals were selected based on logged lithology, alteration and systematic handheld XRF multi-elements readings. The majority of the AC samples were dry with limited wet samples encountered. AC drill chips (from each metre interval) were examined visually and logged by the geologist. Any visual observation of alteration or of mineralisation was noted on the drill logs. Duplicate samples are submitted at a rate of
	standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 approximately 4% of total samples taken (ie one duplicate submitted for every 25 samples). The Delta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• All air core holes were drilled with a Bostech Drillboss 200 mounted on a 4WD truck with on-board compressor (CFM 600, PSI 250) using a nominal 90mm air core drill bit. AC drill collars are surveyed using a Garmin GPS Map 64
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All measures have been taken to maximise sample recovery and representative nature of the samples. Majority of the samples collected were of good quality. Where moisture was encountered the sample recovery was still excellent, estimated at >80%. No evidence has been observed of a relationship between sample recovery and grade. The excellent sample recoveries obtained preclude any assumption of grain size bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Air core (AC) chips are logged visually by experienced and competent geologists. Chips are washed and stored in chip trays in 1m intervals. Logging is both qualitative and quantitative and includes details on lithology, alteration, structure, vein percentage, mineralisation (sulphide / visible gold) percentage. The entire length of each drill hole is logged and evaluated and chip trays are photographed.

Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No core was drilled in the programme reported here. AC samples consist of speared material from 1m sample pile; sample composites vary from 1m to 5m depending on the observed characteristics of the chips and multi-element readings done by the hand-held XRF Niton analyser. The entire ~3kg AC sample is pulverized to 75µm (85% passing). This is considered best practice and is standard throughout the industry. Pulp duplicates are taken at the pulverising stage and selective repeats conducted as per the laboratory's normal standard QA/QC practices. Duplicate samples taken every 25th sample. Standards also submitted to check laboratory accuracy. Sample size is industry standard and is appropriate for grain size of the material sampled.
Quality of	 The nature, quality and appropriateness of the assaying 	• Fire assay is a total digest technique and is considered
assay data	and laboratory procedures used and whether the technique	appropriate for gold. Other elements were assayed using
and	is considered partial or total.	ICP-MS after 4 acid digest.
tests	instruments, etc. the parameters used in determining the	Delta XRF Analyser Thundelarra follows the manufacturer's
10010	analysis including instrument make and model, reading	recommended calibration protocols and usage practices.
	times, calibrations factors applied and their derivation, etc.	Magnetic susceptibility measurements are taken on each 1m interval downhole
	standards, blanks, duplicates, external laboratory checks)	• Certified references material standards as 1 every 20
	and whether acceptable levels of accuracy (ie lack of bias)	samples, duplicates 1 every 25 samples.
	and precision have been established.	• Lab using random pulp duplicates and certified reference material standards.
		•Accuracy and precision levels have been determined to be
		satisfactory after analysis of these QA/QC samples.
Verification	• The verification of significant intersections by either	All sampling is routinely inspected by senior geological
of sampling	independent or alternative company personnel.	staff. Significant intersections are inspected by senior
anu assaying	 Documentation of primary data, data entry procedures. 	• The program included no twin holes.
	data verification, data storage (physical and electronic)	Data is collected and recorded initially on hand-written
	protocols.	logs with summary data subsequently transcribed in the
	 Discuss any adjustment to assay data. 	field to electronic files that are then copied to head office.
		No adjustment to assay data has been needed.
Location of	 Accuracy and quality of surveys used to locate drill holes (collar and down hole surveys) trenches, mine workings and 	Collar locations were located and recorded using hand- hold GPS (Garmin 60Cy model) with typical accuracy of ±2m
uata points	other locations used in Mineral Resource estimation.	Down-hole surveys every ~50m in RC hole and every 18m to
	 Specification of the grid system used. 	30m in diamond holes, using a Reflex EZ-track tool or Champ
	Quality and adequacy of topographic control.	gyro as applicable.
		The grid system applicable to the area is Australian
		Geodetic Grid GDA94, Zone 50.
		Topographic control is based on standard industry
		essentially flat across the project at RI 480m. Detailed
		altimetry (and thus the reporting of RLs for each drill collar)
		is not warranted at this stage of exploration.
Data spacing	• Data spacing for reporting of Exploration Results.	• Drill hole collars were located and oriented so as to deliver
and	• Whether the data spacing and distribution is sufficient to	maximum relevant geological information to allow the
distribution	establish the degree of geological and grade continuity	geological model being tested to be assessed effectively.
	appropriate for the Mineral Resource and Ore Reserve	 This is still early stage exploration and is not sufficiently advanced for this to be applicable
	Whether sample compositing has been applied.	• Samples were taken on a 1, 2, 3, 4 and 5m basis subject to
	0 the second s	the encountered lithology.
Orientation	Whether the orientation of sampling achieves unbiased	• Current drilling aims to ascertain the details of the
of data in	sampling of possible structures and the extent to which this	complex structural regime hosting the mineralisation. To
relation to	is known, considering the deposit type.	date there is still insufficient data to confirm true widths,
geological	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered 	consistent orientation of lithologies, relationships between lithologies, and the nature, orientation and movement
structure	to have introduced a sampling bias, this should be assessed	direction on controlling structures and faulting. The drilling
	and reported if material.	programmes continue to generate geological data to
		develop an understanding of these parameters.

		• Data collected so far presents no suggestion that any sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	• When all relevant intervals have been sampled, the samples are collected and transported by Company personnel to secure locked storage in Perth before delivery by Company personnel to the laboratory for assay.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Internal reviews are carried out regularly as a matter of policy. All assay results are considered to be representative as both the duplicates and standards from this programme have returned satisfactory replicated results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Garden Gully Project comprises fifteen granted prospecting licences P51/2909, P51/2910, P51/2911, P51/2912, P51/2913, P51/2914, P51/2760, P51/2761, P51/2762, P51/2763, P51/2764, P51/2765, P51/2941, P51/2948, P51/3009 and two granted exploration licences E51/1661, and E51/1737, totalling approximately 78 square kilometres in area. THX holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA. The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Workings at Garden Gully began with the Crown gold mine (1895 – 1901: 264 tonnes at 1.99 oz/t (~56 g/t) Au average). The Kyarra mine followed (1909 – 1917): 18,790 oz gold from quartz veins in "strongly sheared, decomposed, sericite rich country rock". From 1977 to 2009, several exploration companies conducted exploration work over the area with aircore, RAB and RC drilling. Better intersections included Dominion's (1988) 15m at 2.38g/t from 5m at Crown Prince and Julia Mines' (1989) 12m at 5.16 g/t Au from 18m; 6m at 3.04 g/t Au from 18m at Lydia.
Geology	Deposit type, geological setting and style of mineralisation.	 The Garden Gully project lies on the south-eastern limb of the Abbotts Greenstone Belt; comprised of Archaean rocks of the Greensleeves (formerly Gabanintha) Formation; a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones. The Project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of typically massive and unaltered dolerite. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds, within anastamosing ductile dextral shear zones. Mineralised bodies show sigmoidal shapes, plunging toward the SW at a steep angle along the lineation. At the Battery prospect, horizons of graphitic shale with local massive sulphides are interposed between the locally deformed and sheared mafic/ultramafic intrusives of the Greensleeves formation. Intrusions of quartz-porphyry are

		also observed. Gold mineralisation is localised in quartz veins with arsenopyrite, within the massive sulphides and at or near the contacts between black shales, quartz porphyry and mafic schist. Primary gold mineralisation in quartz feldspar porphyry is noted at depth in drilling: porphyry is also recorded in historical reports on Crown Prince / Kyarra.
Drill hole Information	 Summary of all information material to understanding the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why it is the case. 	• All relevant drillhole details are presented in Appendix 2 and in Figures 2, 3, 4, 5, 8, 9 and 11. The RL is not recorded against each individual drill hole as the project areas is relatively flat and so detailed altimetric measurements are not required. For data evaluation and plotting, the regional RL (480m) is used.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All summary information of significant drill intercepts is presented in Table 1. Full assay data are recorded in Appendix 1. No assay grades have been cut. Arithmetic weighted averages are used. For example, 14m to 19m in TGGAC181 is reported as 5m at 6.9 gpt Au. This comprised 5 samples, each of 1m interval, for a total of 5m, calculated as follows: [(1*1.98)+(1*1.27)+(1*28.00)+(1*1.50)+(1*1.62)] = [34.37/5.0] = 6.87 = 6.9 gpt Au to one decimal place. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Insufficient geological data have yet been collected to confirm the geometry of the mineralisation. The current drilling programmes aim to confirm our interpretation and afford greater certainty. True widths are as yet unknown with any certainty. The information available to date is advancing our interpretation of geometry but requires further investigation. Reported intercepts are downhole intercepts and are noted as such.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	• Relevant location maps and figures are included in the body of this announcement. Cross- and long-sections are presented in Figures 6, 7 and 10.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• This announcement includes assay results for holes drilled at various Garden Gully prospects including Young, Transylvania, Lydia, Leanne and Ardeal. The reporting is comprehensive and thus by definition balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This announcement includes assay data of sampling generated from the air core drilling programme described herein. It also includes interpretations and images from Sub-Audio Magnetics ("SAM") and Magneto-Metric Conductivity ("MMC") geophysical surveys carried out over zones identified as hosting complex structural features. The geophysical surveys were conducted by Gap GeoPhysics Australia Pty Ltd. The surveys were commissioned for the purpose of assisting sub-surface geophysical investigation to map geological structures. The surveys used Gap's HPTX transmitter system and SAM magnetometer receiver. Further details of the transmitter and receiver equipment are contained in Appendix 4.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations 	• Upon completion of the evaluation of the recent drill programmes, follow-up work programmes will be planned and PoWs submitted. It is expected that the interpretation will warrant infill drilling as part of the next stage of

and future drilling areas, provided this information is not commercially sensitive.	 exploration to move towards identification of mineralisation of potentially commercial significance. Figures 5, 8, 9 and 11 provide a broad overview of the potential geological targets at the Garden Gully Project that are still to be tested by follow up drilling.
---	--

Appendix 4: Instrumentation and Data Processing for SAM / MMC surveys undertaken.

Instrumentation

Receiver System

The acquisition system and survey parameters are summarised in Table 2.

Table 2 Survey Instrument Parameters.

Roving Magnetometer Acq	Roving Magnetometer Acquisition System				
Instrument	Gap Geophysics TM-7B SAM receiver				
Sensor	Geometrics G-822 Cs vapour				
Software	SAMui v18				
Sample rate	2400 Hz				
Components	Total B-field				
Powerline frequency	50 Hz				
Magnetometer Base Statio	n				
Magnetometer	Gap Geophysics TM-7B SAM receiver				
Sample rate	1200 Hz				
Sample resolution	0.1 pT				
Navigation and Positioning					
GPS	Trimble Ag114				
Differential corrections	OmniSTAR VBS corrections				
Sample Rate	1 Hz				
Datum	GDA94 / MGA z50				
Nominal Line Spacing	50 m				

Geophysical Transmitter

The transmitter system details are listed below in Table 3.

Table 3 Transmitter system specifications.

Transmitter system	
Transmitter	HPTX-70
Power supply	Built-in
Controller	Built-in
Timing	GPS synchronisation
Current	CP1: 18 A
	CP2: 9 A
	L01: 18 A
	T01: 17 A
	T02: 28 A
	Y01: 13 A
Transmit frequency	6.25 Hz
Transmitter ramp time	Approx. 0.6 ms
Duty cycle	50 %

Data Processing

Raw magnetic field measurements taken with the SAM receiver were digitally filtered to separate the spatial magnetic field from the temporal electromagnetic field.

Interference produced by mains power when in close proximity to power lines was separated from the SAM signal as well as the background magnetic response.

Total Magnetic Intensity Data Recovery

The spatial magnetic field profile extracted from the raw SAM data was initially over-sampled, being acquired at a rate of 2400 Hz. After low-pass filtering to separate it from the time-varying SAM signal, the resulting magnetic data were produced at an output sample spacing of ~50 cm at typical walking speeds.

A magnetometer base station was set up in the region of the survey, but away from electrical interference such as the transmitting loop or mains power lines. This unit monitored the temporal change of the earth's magnetic field during the survey. To correct for this the base station magnetometer readings were subtracted from the rover acquisition system's data.

Total Field Magnetometric Resistivity Data Recovery

Total field magnetometric resistivity (TFMMR) data waveforms separated from the spatial magnetic field were stacked to enhance the signal-to-noise ratio. TFMMR values were then computed by integrating beneath the waveform during the transmitter on-time. Normalization of TFMMR values was performed by dividing the integration time by the transmitter current used. The uncorrected TFMMR values thus determined have units of picoteslas per amp (pT/A).

Primary and Normal Corrections

The theoretical electromagnetic fields produced by the wire feeding the electrodes (primary field) and current flowing through a homogenous half-space (normal field) were computed and subtracted from the TFMMR data. The resulting corrected TFMMR data were therefore purely anomalous and the consequence of perturbations in current flow caused by lateral conductivity variations.

Magnetometric Conductivity / Equivalent MMR Transformation

The TFMMR parameter is a total-field measurement that is made in the presence of the large background magnetic field of the Earth. This results in the TFMMR field being a pseudocomponent measurement made in the direction of the Earth's magnetic field. As this component direction is variable from site to site and grid to grid, TFMMR data are generally non-standard and not intuitively interpreted.

The Equivalent MMR transform was developed by Boggs (1999) to provide a standard, intuitive presentation format for TFMMR data. This can be done via a 2D fast Fourier transform resulting in a horizontal component grid file. This transform was applied to the gridded TFMMR data along the SAM traverse line direction, and magnetometric conductivity (MMC) images generated from these grid files.

MMC data are more readily related to underlying conductivity structure than TFMMR data. In general terms, MMC highs may be associated with underlying features that are relatively conductive and lows with resistive features.

TFEM Data Recovery

Total field electromagnetics (TFEM) data were measured in the transmitter off-time. In the offtime both electromagnetic (EM) and induced polarisation (IP) responses can manifest, though the latter normally requires transmit frequencies as low as 0.125 Hz to be visible above the EM response. Due to the fact that dynamic mode SAM uses higher frequencies, the successful extraction of IP parameters is generally restricted to resistive ground or stationary mode SAM, known as SAMSON. However, EM responses can usually be detected in SAM data and may be of exploration benefit.

SAM off-time data were extracted from 17 integration windows as shown in Figure 1. This involved summing the off-time data under the decay curve for each time gate and stacking consecutive readings in a moving window.

A Edit Averaging Windows × 7 sample number 50 30 30 35 milliseconds Sort Delete Clear Reset Add Load from file... Save to file... Default Windows Log Scale Selected logfile: 111A.TMB OK Sample rate SAM Frequency SAM Duty-cycle Power Frequency Ramp Time (ms) Use Fixed Ramp Time Sample Interval 0 2400 50 Hz 0.000 ÷ ms 0.417ms 6.25 Hz 50 % Cancel Selected Window < > Start 1 End 1 🗘 Width TMR file processing - per window values: Equivalent sample rate: All subsequent windows are also updated with changes. Channel Centre (ms) Start (ms) End (ms) Width (ms) Power Freq. Cycles Start # End #

1	0.417	0.208	0.625	0.417	0.021	1	1
2	0.833	0.625	1.042	0.417	0.021	2	2
3	1.250	1.042	1 458	0.417	0.021	3	3
4	1.667	1.458	1.875	0.417	0.021	4	4
5	2.292	1.875	2.708	0.833	0.042	5	6
6	2.708	2.292	3.125	0.833	0.042	6	7
7	3.333	2.708	3.958	1.250	0.063	7	9
8	4.375	3.542	5.208	1.667	0.083	9	12
9	5.833	4.792	6.875	2.083	0.104	12	16
10	7.292	6.042	8 54Z	2.500	0.125	15	20
11	9.375	8.125	10.625	2.500	0.125	20	25
12	11.458	8.958	13.958	5.000	0.250	22	33
13	14.375	11.875	16.875	5.000	0.250	29	40
14	18.125	15.625	20.625	5.000	0.250	38	49
15	22.708	17.708	27.708	10.000	0.500	43	66
16	28.125	23.125	33.125	10.000	0.500	56	79
17	34.375	29.375	39.375	10.000	0.500	71	94

Figure 1 TFEM channels extracted from the SAM data.

Table 4 Data processing parameters.

Data Processing Parameters	
TMI sample interval	~0.5 m after stacking
TFMMR sample interval	~2.0 m after stacking
TFEM sample interval	~2.0 m after stacking
Gridding	Minimum curvature
Cell size	10 m
TFMMR / TFEM Filtering	Combination of non-linear and low pass filtering.
TMI Filtering	Diurnal corrections applied.
Magnetic Inclination	-59.8 degrees
Magnetic Declination	0.6 degrees