

Review Confirms Exploration Potential at Waterloo & Agincourt

Highlights:

- Review of historic drilling has confirmed that the high grade Waterloo deposit is open at depth and along strike
- Initial focus on down-plunge potential of Waterloo West and also potential for fault repetitions
 of mineralisation at Waterloo East
- A number of significant historic intercepts at the Agincourt Prospect were highlighted:
 - AGRC12 intercept of 27.0m @ 0.3% Cu, 0.9% Pb, 3.6% Zn, 0.9g/t Au & 12 g/t Ag
 - AGDD1 intercept of 2.5m @ 0.3% Cu, 1.4% Pb, 4.8% Zn, 3.8 g/t Au & 98 g/t Ag
- Potential for significant mineralisation below 400m depth at Agincourt and Agincourt West

Red River Resources Limited (ASX: RVR) ("Red River" or the "Company") is pleased to announce that a review of the historic exploration database has confirmed the exploration potential at the high grade Waterloo Deposit and the Agincourt Prospect. The review highlighted the down plunge potential of Waterloo West, and also the potential for fault repetitions of the mineralisation at Waterloo East.

Analysis of the results of historical drilling has confirmed the presence of low grade polymetallic massive sulphide mineralisation at the Agincourt Prospect, with a number of significant intercepts (refer to Table 1). The bulk of the geological and geophysical evidence suggests that the potential for significant mineralisation at Agincourt and Agincourt West is at depths greater than 400 metres below surface.

The Company is planning to conduct a close spaced IP survey to enhance its understanding of the potential at depth in Q3 2016 to generate targets for a new phase of drilling at Waterloo.

Red River's Managing Director Mel Palancian commented: "We are pleased with the outcome of the review, which demonstrates the scope to find further extensions to the mineralisation at our highest grade deposit - Waterloo."

The Waterloo system extends for over 1km and includes Agincourt and Agincourt West. Waterloo itself is open down plunge at Waterloo West and at Waterloo East. We plan to conduct a close spaced IP survey to better understand the targets at depth before committing to a new phase of drilling at this target."

Figure 1 Waterloo-Agincourt Long Section

Table 1 Agincourt Prospect – Significant Historical Drilling Assay Intervals

Hole ID	From (m)	To (m)	Intersection (m) ⁽¹⁾	Cu (%)	Pb (%)	Zn (%)	Au (g/t)	Ag (g/t)	Zn Eq(%)
AGDD1	178.8	181.3	2.5	0.3%	1.4%	4.8%	3.8 g/t	98 g/t	11.3%
AGDD2	259.55	271.55	12.0	0.5%	1.6%	5.0%	0.9 g/t	16 g/t	8.9%
AGDD5	250.0	253.1	3.1	0.2%	0.6%	3.8%	0.2 g/t	9 g/t	5.4%
AGDD8	261.55	261.9	0.3	0.8%	0.1%	3.0%	0.1 g/t	4 g/t	5.9%
AGRC12	106.0	133.0	27.0	0.3%	0.9%	3.6%	0.9 g/t	12 g/t	6.0%
AGRC2	94.0	96.0	2.0	0.3%	1.7%	6.0%	0.9 g/t	12 g/t	9.1%
AGRC7	153.55	156.9	3.35	0.3%	1.1%	4.7%	0.2 g/t	5 g/t	6.9%
AGRC8	100.0	106.0	6.0	1.4%	0.9%	3.5%	0.4 g/t	19 g/t	9.7%

(1) Down hole widths reported. True widths are likely to be 60-70% of down hole widths

Thalanga Zinc Project Background

Red River released a Restart Study (the internal study prepared by Red River to assess the potential restart of the Thalanga Zinc Project) in November 2015, which demonstrated the highly attractive nature of the Project. The Project has a low operating cost, low pre-production capital cost (\$17.2 million), and a short timeline to production (six months).

Annual average production is 21,400 tonnes of zinc, 3,600 tonnes of copper, 5,000 tonnes of lead, 2,000 ounces of gold and 370,000 ounces of silver in concentrate over an initial mine life of five years, and there is outstanding extension potential.

Please refer to ASX release dated 12 November 2015 for further details on the Thalanga Zinc Project Restart Study. Red River confirms that all material assumptions underpinning the production target in the ASX release dated 12 November 2015 continue to apply and have not materially changed.

The Thalanga Zinc Project Restart Study is based on production from three deposits – West 45, Far West and Waterloo. The Thalanga Zinc Project Restart Study is based on low level technical and economic assessments and there is insufficient data to support the estimation of Ore Reserves at Far West and Waterloo, provide assurance of an economic development case at this stage, or provide certainty that the results from the Thalanga Zinc Project Restart Study will be realised. Further, as the production target that forms the basis of the Thalanga Zinc Project Restart Study includes Mineral Resources that are in the Inferred Category and there is a low level of geological confidence associated with Inferred Mineral Resources, there is no certainty that further exploration work will result in the determination of Indicated Mineral Resources or that the production target itself will be realised.

On behalf of the Board,

Mel Palancian Managing Director Red River Resources Limited

For further information please visit Red River's website or contact us:

Mel Palancian Managing Director <u>mpalancian@redriverresources.com.au</u> D: +61 3 9095 7775 Nathan Ryan NWR Communications <u>nathan.ryan@nwrcommunications.com.au</u> M: +61 420 582 887

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Results is based on information compiled by Mr Tav Bates who is a member of the Australasian Institute of Mining and Metallurgy, and a full time employee of Red River Resources Ltd., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Bates consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 This report presents historical drilling data collected by Pancontinental Resources Pty Ltd & Outokumpu Australia Pty Ltd during the period 1988 to1989 Drilling data consists of Diamond Core drilling, undertaken using Industry Standard procedures for the era.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling techniques consisted of a combination of Reverse Circulation and HQ and NQ2 sized diamond core drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery was measured by trained company field technicians Sample loss is negligible
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, 	 Holes were logged to a level of detail that would support mineral resource estimation. Qualitative logging includes lithology, alteration and textures Quantitative logging includes mineral percentages All holes were logged in full

Criteria	JORC Code explanation	Commentary				
Sub- sampling techniques and sample preparation	 channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality 	 Samples consisted of Reverse Circulation drill chips and half diamond core Reverse Circulation Samples consisted of splitting 3m samples to approximately 2kgs weight. Diamond core samples consisted of sawn half core samples with intervals ranging from 0.2m - 1.5m in 				
	 and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 length selected on visual mineralisation and geological boundaries. Sample sizes are appropriate for the grainsize and style of mineralisation QAQC measures are unknown. 				
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were analysed by Pilbara Laboratories, Townsville Analysis consisted of Atomic Absorption Spectrometry (AAS) for Ag, Cu, Pb, & Zn, and a 50g Fire Assay for Au. Selected samples were also assayed for Ba using XRF. QAQC measures are unknown 				
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections were validated against geological logs by company geologists. Primary assay data has been transcribed from original laboratory reports 				
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars have been surveyed with a DGPS Drilling was conducted on a local grid system and later transformed to MGA94 Zone 55 coordinate system Hole Coordinates presented within Appendix 1 are MGA94 Zone 55 Topographic control is based on a detailed Digital Terrain Model 				
Data spacing	• Data spacing for reporting of Exploration	Drill hole spacing varies				

Criteria	JORC Code explanation	Commentary
and distribution	 Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This report does not present any Mineral Resource or Ore Reserve Estimation No sample compositing has been applied
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are orientated perpendicular to the perceived strike of the host lithologies The orientation of the drilling is designed to not bias sampling Downhole surveying was completed on average every 30m
Sample security	• The measures taken to ensure sample security.	 Sample security measures are unknown
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews of sampling techniques are available

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drilling was conducted on EPM 10582 EPM 10582 is held by Cromarty Resources Pty Ltd, a wholly owned subsidiary of Red River Resources Ltd EPM10582 forms part of Red River's 100% owned Thalanga Zinc Project No Native Title determinations exist over the Agincourt or Waterloo prospects. Red River Resources has engaged the Gudjalla people for Cultural Heritage surveys within the district.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historic Exploration was carried out by Pancontinental Resources Pty Ltd & Outokumpo Australia Pty Ltd during the This included geochemical sampling, geophysics & drilling
Geology	 Deposit type, geological setting and style of mineralisation. 	 The exploration model is Volcanic Hosted Massive Sulphide (VHMS) base metal mineralisation The regional geological setting is the Mt Windsor Volcanic Sub-province, consisting of Cambro- Ordovician marine volcanic and volcano-sedimentary sequences
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is the case. 	 See Appendix 1 – Drill Hole Details See Appendix 2 – Drill Hole Assay Details
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Interval length weighted assay results are reported Significant Intercepts generally reflect intercepts of greater than 5% Zn Equivalent The Zn Equivalent formula utilised is: Zn% + (Cu%*3.3) + (Pb%*0.9) + (Au ppm*0.5) + (Ag ppm*0.025)

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The mineralisation is interpreted to be steeply dipping Drill holes have been angled to intercept the mineralisation as close to perpendicular as possible. Down hole intercepts are reported. True widths are likely to be 60-70% of the down-hole widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plans and sections. 	Refer to plans and sections within report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill holes within the prospect area are included within the figures. The location of all significant intersections are identified on the figures.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported.	 All meaningful and material data is reported
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further drilling is currently being designed to test for extensions to the mineralisation reported

Appendix 1. Drill Hole Details

Hole ID	Easting	Northing	m RL	Dip	Azimuth	Final Depth
AGDD1	406110	7745820	322.8	-60	164.6	212.6
AGDD2	406201	7745865	322.9	-65	164.6	303.4
AGDD5	406001	7745842	322.5	-67	164.6	352.0
AGDD8	406547	7746118	325.7	-65	165.1	479.9
AGRC12	406214	7745817	322.9	-60	164.6	138.0
AGRC2	406326	7745784	322.8	-60	344.6	150.0
AGRC7	406425	7745801	323.4	-60	344.6	204.7
AGRC8	406509	7745875	324.5	-60	344.6	150.0

Appendix 2. Assay Details

HoleID	From (m)	To (m)	Interval (m)	Cu%	Pb%	Zn%	Ag g/t	Au g/t	Zn Eq.%
AGDD1	90	148.5	58.5	No Si	gnifican	t Assays			
AGDD1	148.5	151.5	3	0.01	0.02	0.08	1	0.09	0.19
AGDD1	151.5	151.8	0.3	0.06	0.36	0.67	8	0.15	1.47
AGDD1	151.8	152.6	0.8	0.11	1.13	2.00	14	0.25	3.86
AGDD1	152.6	153.4	0.8	0.08	0.64	0.55	5	0.07	1.54
AGDD1	153.4	153.75	0.35	2.47	3.13	0.65	28	0.41	12.52
AGDD1	153.75	155.25	1.5	0.23	0.32	1.19	4	0.09	2.38
AGDD1	155.25	156.15	0.9	0.01	0.02	0.11	1	0.07	0.21
AGDD1	156.15	157.4	1.25	0.04	0.01	0.09	1	0.03	0.26
AGDD1	157.4	158.15	0.75	0.02	0.02	0.14	2	0.04	0.29
AGDD1	158.15	159.15	1	0.01	0.04	0.04	1	0.04	0.15
AGDD1	159.15	160.75	1.6	0.02	0.06	0.10	1	0.08	0.28
AGDD1	160.75	161.6	0.85	0.01	0.02	0.04	1	0.04	0.13
AGDD1	161.6	161.95	0.35	0.02	0.11	0.23	6	0.16	0.62
AGDD1	161.95	162.6	0.65	0.06	0.40	0.56	5	0.09	1.29
AGDD1	162.6	164.9	2.3	0.04	0.25	0.64	2	0.05	1.07
AGDD1	164.9	165.55	0.65	0.01	0.03	0.09	1	0.02	0.20
AGDD1	165.55	167.1	1.55	0.18	1.00	2.77	4	0.08	4.41
AGDD1	167.1	168.7	1.6	0.00	0.01	0.01	1	0.06	0.09
AGDD1	168.7	169.2	0.5	0.04	0.05	0.03	1	0.03	0.24
AGDD1	169.2	171	1.8	0.00	0.00	0.01	1	0.01	0.04
AGDD1	171	172.85	1.85	0.00	0.00	0.01	1	0.02	0.05
AGDD1	172.85	175.95	3.1	0.00	0.01	0.02	3	0.07	0.16
AGDD1	175.95	177.25	1.3	0.01	0.02	0.04	1	0.02	0.11
AGDD1	177.25	178.1	0.85	0.01	0.02	0.04	1	0.03	0.12
AGDD1	178.1	178.8	0.7	0.00	0.01	0.03	1	0.02	0.08
AGDD1	178.8	179.7	0.9	0.23	0.42	1.24	50	1.59	4.41
AGDD1	179.7	180.8	1.1	0.25	0.34	4.32	96	6.92	11.31
AGDD1	180.8	181.3	0.5	0.43	5.24	12.20	191	0.92	23.58
AGDD1	181.3	181.95	0.65	0.07	0.03	0.07	3	0.03	0.41
AGDD1	181.95	185	3.05	0.01	0.02	0.08	1	0.21	0.26
AGDD2	34	232.4	198.4	No Sig	gnifican	t Assays		1	[
AGDD2	232.4	233.1	0.7	0.00	0.01	0.16	1	0.06	0.23
AGDD2	233.1	233.65	0.55	1.00	0.79	4.45	5	0.15	8.66
AGDD2	233.65	235.3	1.65	0.01	0.06	1.11	1	0.08	1.27
AGDD2	235.3	237.9	2.6	0.01	0.01	0.35	1	0.07	0.44
AGDD2	237.9	238.9	1	0.03	0.05	3.08	1	0.12	3.30
AGDD2	238.9	239.55	0.65	0.43	1.60	8.90	11	0.71	12.39
AGDD2	239.55	241.05	1.5	0.01	0.10	0.32	1	0.2	0.55
AGDD2	241.05	242.4	1.35	0.03	0.07	0.15	8	0.37	0.70
AGDD2	242.4	244.2	1.8	0.04	0.24	0.46	8	0.37	1.18
AGDD2	244.2	246.1	1.9	0.02	0.08	0.18	3	0.19	0.48

HoleID	From (m)	To (m)	Interval (m)	Cu%	Pb%	Zn%	Ag g/t	Au g/t	Zn Eq.%
AGDD2	246.1	247.9	1.8	0.00	0.02	0.20	1	0.06	0.28
AGDD2	247.9	249.4	1.5	0.00	0.03	0.08	1	0.11	0.20
AGDD2	249.4	252	2.6	0.01	0.07	0.24	1	0.09	0.42
AGDD2	252	253.2	1.2	0.01	0.71	1.03	2	0.1	1.79
AGDD2	253.2	255.9	2.7	0.01	0.09	0.20	1	0.16	0.43
AGDD2	255.9	257.65	1.75	0.05	0.20	0.47	1	0.14	0.91
AGDD2	257.65	259.55	1.9	0.03	0.25	0.62	1	0.08	1.01
AGDD2	259.55	260.85	1.3	0.66	3.15	5.90	23	0.26	11.62
AGDD2	260.85	261.3	0.45	0.30	1.97	4.22	5	0.21	7.21
AGDD2	261.3	262	0.7	0.46	2.05	4.95	7	0.14	8.56
AGDD2	262	263.25	1.25	0.02	0.17	0.10	1	0.03	0.35
AGDD2	263.25	264.05	0.8	1.07	4.08	8.12	28	0.38	16.21
AGDD2	264.05	265.3	1.25	1.34	5.25	9.86	26	0.67	19.99
AGDD2	265.3	267.4	2.1	0.02	0.09	0.18	1	0.07	0.40
AGDD2	267.4	269	1.6	0.20	0.03	4.43	8	0.27	5.47
AGDD2	269	269.75	0.75	0.70	0.13	8.30	17	0.61	11.46
AGDD2	269.75	270.85	1.1	0.65	2.12	8.53	40	4.95	16.06
AGDD2	270.85	271.55	0.7	0.60	0.30	7.68	45	2.82	12.47
AGDD2	271.55	272.8	1.25	0.04	0.11	0.71	4	0.25	1.17
AGDD2	272.8	273.9	1.1	0.01	0.07	0.15	1	0.12	0.34
AGDD2	273.9	274.4	0.5	0.10	0.28	0.52	85	1.57	4.02
AGDD2	274.4	282.35	7.95	No Significant Assays					
AGDD5	43	248.45	205.45	No Sig	gnificant A	Assays			
AGDD5	248.45	250	1.55	0.02	0.01	0.26	2	0.07	0.41
AGDD5	250	251.5	1.5	0.32	1.14	5.75	13	0.19	8.25
AGDD5	251.5	253.1	1.6	0.13	0.02	2.01	5	0.15	2.64
AGDD5	253.1	254.95	1.85	0.03	0.13	0.33	5	0.08	0.71
AGDD5	254.95	256.95	2	0.02	0.05	0.21	11	0.12	0.66
AGDD5	256.95	258.55	1.6	0.01	0.05	0.16	8	0.21	0.53
AGDD5	258.55	291.4	32.85	No Sig	gnificant A	Assays			
AGDD8	152	261	109	No Sig	gnificant A	Assays			
AGDD8	261	261.55	0.55	0.02	0.02	0.17	1	0	0.29
AGDD8	261.55	261.9	0.35	0.82	0.09	3.01	4	0.06	5.93
AGDD8	261.9	263	1.1	0.04	0.04	0.30	1	0.03	0.51
AGDD8	263	479.9	216.9	No Sig	gnificant A	Assays			
AGRC12	25	97	72	No Sig	gnificant A	Assays			
AGRC13	97	100	3	0.06	0.79	0.16	3	0.15	1.22
AGRC14	100	103	3	0.01	0.0427	0.16	1	0.02	0.26
AGRC12	103	106	3	0.03	0.10	0.39	3	0.13	0.71
AGRC12	106	107	1	0.23	1.03	2.14	4	0.21	4.04
AGRC12	107	108	1	0.27	0.91	1.57	8	0.36	3.66
AGRC12	108	109	1	0.47	3.01	5.55	18	1.28	10.90
AGRC12	109	110	1	0.27	1.83	2.79	12	0.68	5.97
AGRC12	110	111	1	0.18	0.82	3.36	5	0.21	4.92

HoleID	From (m)	To (m)	Interval (m)	Cu%	Pb%	Zn%	Ag g/t	Au g/t	Zn Eq.%
AGRC12	111	112	1	0.65	1.96	8.70	13	0.57	13.22
AGRC12	112	113	1	0.48	2.02	7.30	20	1.07	11.74
AGRC12	113	114	1	0.30	2.60	5.70	24	1.09	10.17
AGRC12	114	115	1	0.08	1.11	5.00	13	1.26	7.21
AGRC12	115	116	1	0.06	0.39	1.39	8	4.39	4.35
AGRC12	116	117	1	0.15	1.64	3.37	21	1.45	6.60
AGRC12	117	118	1	0.07	0.68	1.89	10	0.97	3.45
AGRC12	118	119	1	0.06	0.82	1.99	9	0.92	3.61
AGRC12	119	120	1	0.01	0.34	2.75	11	0.81	3.77
AGRC12	120	121	1	0.12	0.53	2.97	8	0.95	4.53
AGRC12	121	122	1	0.07	0.23	1.64	7	1.01	2.76
AGRC12	122	123	1	0.04	0.12	0.91	9	0.75	1.76
AGRC12	123	124	1	0.10	0.05	1.31	11	0.78	2.36
AGRC12	124	125	1	0.20	0.14	1.49	15	0.68	2.99
AGRC12	125	126	1	0.10	0.32	1.78	7	0.35	2.74
AGRC12	126	127	1	0.27	0.25	5.00	17	0.88	6.98
AGRC12	127	128	1	0.39	0.47	3.24	8	0.34	5.32
AGRC12	128	129	1	0.59	0.63	4.05	9	0.78	7.18
AGRC12	129	130	1	0.58	0.63	3.99	9	0.4	6.90
AGRC12	130	131	1	0.36	0.35	6.45	9	0.44	8.40
AGRC12	131	132	1	0.97	0.28	7.60	21	0.56	11.86
AGRC12	132	133	1	0.28	0.11	3.49	7	0.54	4.96
AGRC12	133	136	3	0.10	0.33	1.07	3	0.11	1.82
AGRC12	136	138	2	0.09	0.31	1.20	3	0.12	1.91
AGRC2	39	58	19	No Si	gnificant A	Assays			
AGRC2	58	59	1	0.13	1.74	0.12	2	0.64	2.47
AGRC2	59	60	1	0.71	3.80	0.10	6	2.5	7.26
AGRC2	60	61	1	0.30	8.25	0.13	2	2.98	10.09
AGRC2	61	62	1	0.15	2.36	0.18	1	0.68	3.17
AGRC2	62	63	1	0.08	0.67	0.18	1	0.25	1.20
AGRC2	63	64	1	0.05	0.53	0.10	1	0.2	0.86
AGRC2	64	65	1	0.09	0.48	0.19	1	0.05	0.96
AGRC2	65	66	1	0.09	0.61	0.32	1	0.09	1.24
AGRC2	66	69	3	0.06	0.50	0.15	1	0.08	0.85
AGRC2	69	72	3	0.05	0.70	0.17	1	0.06	1.03
AGRC2	72	75	3	0.02	0.09	0.09	1	0.02	0.25
AGRC2	75	78	3	0.02	0.07	0.06	1	0.02	0.21
AGRC2	78	81	3	0.01	0.29	0.06	1	0.07	0.43
AGRC2	81	84	3	0.02	0.12	0.10	1	0.19	0.39
AGRC2	84	87	3	0.01	0.10	0.08	1	0.12	0.29
AGRC2	87	90	3	0.01	0.08	0.09	1	0.07	0.25
AGRC2	90	93	3	0.01	0.06	0.04	1	0.08	0.18
AGRC2	93	94	1	0.01	0.08	0.06	1	0.12	0.27
AGRC2	94	95	1	0.34	2.09	7.30	13	0.74	11.00

HoleID	From (m)	To (m)	Interval (m)	Cu%	Pb%	Zn%	Ag g/t	Au g/t	Zn Eq.%
AGRC2	95	96	1	0.19	1.28	4.70	11	0.97	7.24
AGRC2	96	97	1	0.05	0.57	0.72	1	0.2	1.51
AGRC2	97	98	1	0.02	0.25	0.66	1	0.5	1.23
AGRC2	98	99	1	0.01	0.18	0.32	1	0.1	0.60
AGRC2	99	102	3	0.02	0.34	0.26	1	0.13	0.73
AGRC2	102	150	48	No Si	gnificant A	Assays			
AGRC7	44	125.3	81.3	No Si	gnificant A	Assays			
AGRC7	125.3	127.65	2.35	0.01	0.02	0.13	2	0.04	0.24
AGRC7	127.65	128.5	0.85	0.10	0.11	1.02	15	0.62	2.15
AGRC7	128.5	129.4	0.9	0.19	0.22	1.25	11	0.32	2.49
AGRC7	129.4	130	0.6	0.15	1.06	2.50	10	0.19	4.30
AGRC7	130	130.7	0.7	0.05	0.23	0.53	5	0.08	1.06
AGRC7	130.7	131.05	0.35	0.38	1.24	1.88	9	0.21	4.59
AGRC7	131.05	132.2	1.15	0.06	0.06	0.43	5	0.06	0.84
AGRC7	132.2	133	0.8	0.32	0.54	2.15	9	0.17	3.99
AGRC7	133	133.9	0.9	0.05	0.04	0.14	5	0.08	0.50
AGRC7	133.9	136.6	2.7	0.00	0.01	0.03	3	0.01	0.13
AGRC7	136.6	138	1.4	0.07	0.27	1.90	5	0.1	2.53
AGRC7	138	139.65	1.65	0.04	0.01	0.12	2	0.17	0.39
AGRC7	139.65	141.05	1.4	1.03	0.01	0.45	6	0.16	4.09
AGRC7	141.05	142.33	1.28	0.05	0.01	0.15	3	0.09	0.46
AGRC7	142.33	144.5	2.17	0.06	0.16	0.29	1	0.11	0.70
AGRC7	144.5	146.95	2.45	0.02	0.02	0.21	1	0.07	0.33
AGRC7	146.95	148	1.05	0.01	0.02	0.15	1	0.07	0.26
AGRC7	148	149.6	1.6	0.00	0.01	0.18	1	0.05	0.25
AGRC7	149.6	151.5	1.9	0.00	0.01	0.07	1	0.05	0.14
AGRC7	151.5	152.6	1.1	0.01	0.03	0.25	1	0.06	0.36
AGRC7	152.6	153.55	0.95	0.01	0.05	0.52	2	0.07	0.68
AGRC7	153.55	155.15	1.6	0.39	1.35	7.90	6	0.21	10.66
AGRC7	155.15	155.75	0.6	0.08	0.36	1.12	2	0.14	1.82
AGRC7	155.75	156.9	1.15	0.24	1.17	2.16	5	0.18	4.22
AGRC7	156.9	158.6	1.7	0.04	0.64	1.04	1	0.1	1.83
AGRC7	158.6	161.4	2.8	0.12	0.66	1.72	3	0.12	2.85
AGRC7	161.4	162.55	1.15	0.00	0.08	0.12	1	0.08	0.27
AGRC7	162.55	163.05	0.5	0.04	0.31	0.54	2	0.09	1.04
AGRC7	163.05	164.86	1.81	0.01	0.05	0.10	1	0.08	0.25
AGRC7	164.86	166.65	1.79	0.03	0.07	0.24	3	0.09	0.54
AGRC7	166.65	166.9	0.25	0.37	0.67	2.24	11	0.15	4.41
AGRC7	166.9	169.6	2.7	0.01	0.03	0.13	1	0.1	0.26
AGRC7	169.6	204.7	35.1	No Si	gnificant A	Assays			
AGRC8	40	88	48	No Si	gnificant A	Assays			
AGRC8	88	91	3	0.01	0.26	0.03	1	0.04	0.33
AGRC8	91	94	3	0.09	2.00	0.08	2	0.06	2.24
AGRC8	94	97	3	0.10	4.20	0.11	11	0.45	4.73

HoleID	From (m)	To (m)	Interval (m)	Cu%	Pb%	Zn%	Ag g/t	Au g/t	Zn Eq.%
AGRC8	97	100	3	0.47	1.53	0.46	9	0.41	3.82
AGRC8	100	103	3	2.57	0.88	0.48	24	0.33	10.52
AGRC8	103	106	3	0.27	0.86	6.58	14	0.48	8.84
AGRC8	106	109	3	0.06	0.46	1.45	6	0.24	2.33
AGRC8	109	112	3	0.04	0.20	0.65	3	0.29	1.18
AGRC8	112	115	3	0.07	0.47	0.94	5	0.28	1.87
AGRC8	115	118	3	0.07	0.42	1.44	3	0.2	2.22
AGRC8	118	121	3	0.04	0.24	0.29	2	0.15	0.78
AGRC8	121	124	3	0.14	0.14	2.32	3	0.17	3.05
AGRC8	124	127	3	0.02	0.13	0.15	2	0.13	0.46
AGRC8	127	130	3	0.04	0.13	0.43	1	0.07	0.74
AGRC8	130	133	3	0.26	0.58	1.06	3	0.15	2.58
AGRC8	133	136	3	0.08	0.20	0.55	2	0.19	1.15
AGRC8	136	139	3	0.10	0.25	0.56	1	0.12	1.21
AGRC8	139	150	11	No Si	gnificant A	Assays			