

Red River advances development of gold-rich New Queen Lens

Highlights:

- Red River to develop high-grade, gold rich polymetallic Liontown deposit next at Thalanga
- Gold-rich polymetallic mineralisation intersected in New Queen Lens drilling supports Liontown development
- Exceptionally high-grade gold-rich mineralisation in the New Queen Lens
 - LTDD19036 intersected 18.35m @ 9.0% Zn Eq. from 48.65m down-hole, including an exceptional intercept of 1.10m @ 0.5% Cu, 13.7% Pb, 29.6% Zn, 9.8 g/t Au & 371 g/t Ag (57.9% Zn Eq.) within 4.20m @ 23.6% Zn Eq. from 53.10m down-hole
- Outstanding high-grade copper-gold mineralisation intersected in Carrington Lode
 - LTDD19029 intersected 11.35m @ 3.1% Cu & 0.9 g/t Au including 4.65m @ 5.5% Cu & 2.1 g/t
 Au from 188.00m down-hole
 - LTDD19030 intersected 5.60m @ 2.1% Cu & 7.5 g/t Au from 99.70m down-hole including 2.50m @ 1.7% Cu & 13.5g/t Au from 102.80m down-hole
- Mineral Resource update for Liontown Project expected in March 2020 with Liontown mine design work progressing

Base and precious metals producer Red River Resources Limited (ASX: RVR) ("Red River" or "the Company") is pleased to announce it plans to develop the high-grade, gold rich polymetallic Liontown deposit for mining as the next mining operation at its Thalanga Operation in Northern Queensland.

Red River has received all assays from its drilling program at Liontown, which delivered further high-grade gold-rich polymetallic results from the New Queen Lens and intersected high-grade copper-gold mineralisation in the Carrington Lode.

Red River is updating a Mineral Resource Estimate for Liontown Project, and this is expected to be completed in March 2020.

Continued high-grade polymetallic results from Liontown have led Red River to prioritise developing Liontown ahead of the zinc-rich Waterloo deposit, (which will be placed on hold), increasing Red River's mill throughput at Thalanga, as well as gold and silver production.

Red River has a pre-existing Mining Lease (ML 10277) at Liontown and this may enable early works to commence for the development of the New Queen Lens.

Red River Managing Director Mel Palancian said, "Given the results from Liontown, in particular the New Queens Lens in 2019 drilling, there is a strong rationale for fast tracking Liontown's development as our next priority. We are finalising a Mineral Resource update and mine planning for the deposit.

"Prioritising the development of Liontown will allow us to increase production of gold and copper at Thalanga while we continue restart studies for the Hillgrove Gold Project in New South Wales.

"We previously planned to develop Waterloo as the third deposit at Thalanga, but the discovery of the Liontown East deposit and the New Queen drilling results shown that Liontown is a much larger mineralised system and its still open along strike and depth."

LTDD19025: 29.40m @ 5.0% Zn Eq. LTDD19026: 17.40m @ 4.3% Zn Eq. LTDD19024: 50.90m @ 3.6% Zn Eq. LTDD19033: 10.05m @ 5.2% Zn Eq. inc. 4.85m @ 11.7% Zn Eq. LTDD19032: 10.10m @ 6.0% Zn Eq. LTDD19030: 5.30m @ 8.9% Zn Eq. 300 300 Complete oxidation Saprock Fresh rock Open 200 200 0 100 100 LTDD19029: 15.84m @ 3.0% Zn Eq. Legend LTDD19036: 18.35m @ 9.0% Zn Eq. **Drillhole Intersections** Assays Pending 0 Oxide % Zn Eq. m 2 - 4 New Queen Lens 4 - 6 6 - 8 Old Workings (New Queen Oxide) 8 - 15 -100 >8% Zn Eq. m 402600 402800 403000

Figure 1 New Queen Lens Long Section

Liontown Development

With completion of the current Liontown drilling program, Red River is working to update the Liontown Project JORC 2012 Mineral Resource (including the Mineral Resource update for the New Queen Lens). The Liontown Project Mineral Resource update is expected to be completed in March 2020.

Liontown mine design work and mining studies are proceeding, and Red River has decided to focus on developing Liontown as its third mining operation at Thalanga, increasing mill throughput at Thalanga and Red River's exposure to gold and silver production.

The current Liontown drilling program has highlighted exceptionally high-grade precious metal rich polymetallic mineralisation in the New Queen Lens, with thick intercepts of fresh sulphide mineralisation at relatively shallow depths.

Red River has a pre-existing Mining Lease (ML 10277) at Liontown and this may enable early works to commence for the development of the New Queen Lens.

Red River had previously planned to develop the zinc-rich Waterloo Project as the third mining operation. Waterloo will now be placed on hold.

New Queen Lens Drilling Results

The New Queens Lens is a large body (approximately 600m by 250m by 5m) of polymetallic (Cu-Pb-Zn) VHMS mineralisation with significant precious metal (gold and silver) credits. Drilling to date has returned wide intercepts of high-grade polymetallic fresh sulphide mineralisation with material precious metals, particularly gold, from within 30m of the surface.

Final assay results from drilling at the New Queen Lens (Liontown Project) highlighted the precious metal-rich nature of the VHMS mineralisation (refer to Table 1), with notable intercepts including the exceptionally highgrade mineralisation intersected in LTDD19036.

LTDD19036 intersected 18.35m @ 9.0% Zn Eq. from 48.65m down-hole, including 4.20m @ 23.6% Zn Eq. from 53.10m down-hole including an exceptional intercept of 1.10m @ 0.5% Cu, 13.7% Pb, 29.6% Zn, 9.8 g/t Au & 371 g/t Ag (57.9% Zn Eq.) from 56.20m down-hole

Table 1 Material drill hole assay summary (current drilling), Liontown Project (New Queen Lens Sulphide)

Hole ID	From	То	Down Hole Intersection	True Width Estimate	Cu	Pb	Zn	Au	Ag	Zn Eq.
	(m)	(m)	(m)	(m)	(%)	(%)	(%)	(g/t)	(g/t)	(%)
LTDD19024	131.10	182.00	50.90	13.57	0.1	0.6	2.4	0.4	7	3.6
inc.	134.55	139.40	4.85	2.81	0.3	1.2	9.2	0.2	7	11.7
inc.	177.00	182.00	5.00	2.32	0.1	2.0	4.2	2.0	15	7.7
LTDD19025	61.00	90.40	29.40	24.62	0.1	1.3	3.0	0.4	11	5.0
inc.	69.90	78.00	8.10	6.88	0.2	2.2	4.3	0.3	16	7.4
inc.	85.00	86.80	1.80	1.54	0.3	5.5	10.1	2.5	28	18.0
LTDD19026	56.50	73.90	17.40	10.28	0.1	0.9	2.6	0.7	9	4.3
Inc.	58.40	60.20	1.80	1.06	0.1	4.4	10.1	4.7	53	18.1
LTDD19029	131.30	147.14	15.84	15.0	0.1	0.7	2.0	0.1	8.4	3.0
LTDD19030	63.00	68.30	5.30	4.82	0.1	2.8	5.6	0.5	6	8.9
LTDD19031	85.60	93.40	7.80	5.72	0.1	0.5	1.4	0.2	3	2.2
LTDD19032	65.90	76.00	10.10	8.45	0.2	1.5	2.7	0.9	44	6.0
inc.	71.50	76.00	4.50	3.53	0.3	2.8	5.0	1.5	34	10.2
LTDD19033	45.20	55.25	10.05	9.05	0.1	0.9	2.0	3.2	22	5.2
inc.	53.80	55.25	1.45	1.31	0.2	1.0	2.7	18.3	50	14.6
LTDD19036	48.65	67.00	18.35	12.5	0.2	2.3	4.7	1.4	42	9.0
inc.	50.00	57.30	7.30	5.5	0.3	4.3	8.7	3.1	89	17.2
and	53.10	57.30	4.20	3.2	0.3	5.7	12.1	3.6	147	23.6
and	56.20	57.30	1.10	0.85	0.5	13.7	29.6	9.8	371	57.9

Carrington Lode

Drilling also intersected the copper-gold rich Carrington Lode, with LTD19029 and LTDD19030 returning outstanding intersections:

- LTDD19029 intersected 11.35m @ 3.1% Cu & 0.9 g/t Au including 4.65m @ 5.5% Cu & 2.1 g/t Au from 188.00m down-hole
- LTDD19030 intersected 5.60m @ 2.1% Cu & 7.5 g/t Au from 99.70m down-hole including 2.50m @ 1.7%
 Cu & 13.5g/t Au from 102.80m down-hole

Table 2 Material drill hole assay summary (current drilling), Liontown Project (Carrington Lens)

Hole ID	From	То	Down Hole Intersection	True Width Estimate	Cu	Pb	Zn	Au	Ag
	(m)	(m)	(m)	(m)	(%)	(%)	(%)	(g/t)	(g/t)
LTDD19029	188.00	199.35	11.35	8.0	3.1	0.0	0.1	0.9	5.7
inc.	188.00	192.65	4.65	3.5	5.5	0.1	0.1	2.1	9.8
LTDD19030	99.70	105.30	5.60	3.8	2.1	0.7	3.0	7.5	10
inc.	102.80	105.30	2.50	1.7	1.7	1.4	5.7	13.5	16

New Queen Lens Gold-Silver Oxide Mineralisation

From 1951 to 1961, the New Queen Lens (oxide zone) was mined by underground methods to a depth of 15-20m, with total production estimated at \sim 9,300 tonnes of high-grade oxide ore containing \sim 54,000oz silver, \sim 3,000oz of gold and \sim 520 tonnes of lead.

Red River's drilling has confirmed the presence of unmined high-grade gold-silver oxide mineralisation, with LTDD19034 returning the following outstanding result:

LTDD19034 intersected 2.20m @ 15.2% Pb, 5.5 g/t Au & 642 g/t Ag from 31.80m down-hole including 0.75m @ 40.6% Pb, 9.5g/t Au & 619 g/t Ag from 31.80m down-hole

Table 3 Material drill hole assay summary (current drilling), Liontown Project (New Queen Lens Oxide)

Hole ID	From	То	Intersection	Cu	Pb	Zn	Au	Ag	Zn Eq.	
	(m)	(m)	(m) ⁽¹⁾	(%)	(%)	(%)	(g/t)	(g/t)	(%)	Mineralisation
LTDD19034	31.80	34.00	2.20	0.2	15.2	0.2	5.5	642	-	Oxide
inc.	32.75	33.50	0.75	0.4	40.6	0.4	9.5	619	-	Oxide

Red River will investigate the potential to define additional gold-silver oxide mineralisation and whether this can be mined as part of the Liontown Project.

Figure 2 NQ Oxide Mineralisation Cross Section

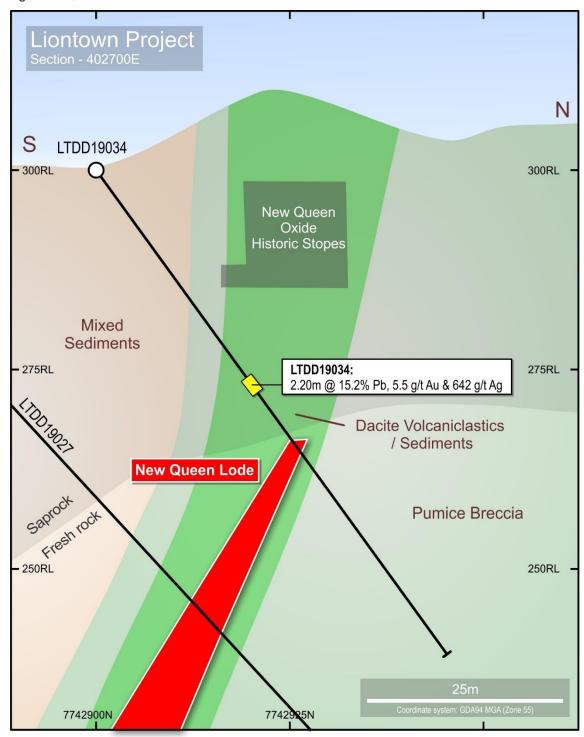


Figure 3 Liontown Project Location

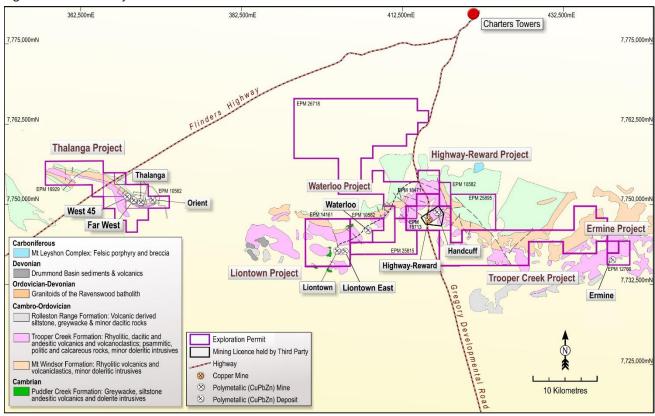


Table 4 Liontown JORC Mineral Resource

Deposit	Resource Class	Tonnage (kt)	Cu (%)	Pb (%)	Zn (%)	Au (g/t)	Ag (g/t)	Zn Eq. (%)
Liontown	Measured	-	-	-	-	-	-	-
	Indicated	367	0.5	1.8	4.6	1.3	21	8.3
	Inferred	1,671	0.5	1.5	4.6	0.8	26	8.4
	Subtotal	2,038	0.5	1.6	4.6	0.8	25	8.4
Liontown East	Measured	-	-	-	-	-	-	-
	Indicated	-	-	-	-	-	-	-
	Inferred	1,515	0.5	2.5	7.3	0.7	29	12.2
	Subtotal	1,515	0.5	2.5	7.3	0.7	29	12.2
Combined	Measured	-	-	-	-	-	-	-
	Indicated	367	0.5	1.8	4.6	1.3	21	8.3
	Inferred	3,185	0.5	2.0	5.9	0.7	28	10.2
	Total	3,553	0.5	2.0	5.7	0.8	27	10.0

Tonnages and grades are rounded. Discrepancies in totals may exist due to rounding.

Source: Liontown Deposit JORC 2012 Resource Estimate (ASX Release, 24 June 2015), Maiden Liontown East Mineral Resource (ASX Release, 18 July 2018) Zinc equivalent (Zn Eq.) has been calculated using the metal selling prices, recoveries and other assumptions contained in Appendices of this announcement. It is Red River's opinion that all elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

About Red River Resources (ASX: RVR)

RVR is seeking to build a multi-asset operating business focused on base and precious metals with the objective of delivering prosperity through lean and clever resource development.

RVR's foundation asset is the Thalanga Base Metal Operation in Northern Queensland, which was acquired in 2014 and where RVR commenced copper, lead and zinc concentrate production in September 2017.

RVR has recently acquired the high-grade Hillgrove Gold-Antimony Project in New South Wales, which will enable RVR to build a multi-asset operating business focused on base and precious metals.

On behalf of the Board,

Mel Palancian

Managing Director

Red River Resources Limited

For further information please visit Red River's website or contact:

Mel Palancian Nathan Ryan

Managing Director NWR Communications

mpalancian@redriverresources.com.au nathan.ryan@nwrcommunications.com.au

D: +61 3 9017 5380 M: +61 420 582 887

COMPETENT PERSON STATEMENT

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Steven Harper who is a member of The Australasian Institute of Mining and Metallurgy, and a full time employee of Red River Resources Ltd., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Harper consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Liontown East Mineral Resource

The information in this report that relates to the estimation and reporting of the Liontown East Mineral Resource is based on and fairly represents, information and supporting documentation compiled by Mr Peter Carolan who is a Member of The Australasian Institute of Mining and Metallurgy and a full time employee of Red River Resources Ltd.

Mr Carolan has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Carolan consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The information in this report that relates to database compilation, geological interpretation and mineralisation wireframing, project parameters and costs and overall supervision and direction of the Liontown East Mineral Resource estimation is based on and fairly represents, information and supporting documentation compiled under the overall supervision and direction of Mr Carolan.

Liontown Mineral Resource

The information in this report that relates to the estimation and reporting of the Liontown Mineral Resource is based on and fairly represents, information and supporting documentation compiled by Mr Stuart Hutchin who is a Member of The Australasian Institute of Mining and Metallurgy, Member of the Australian Institute of Geoscientists and a full time employee of Mining One Consultants Pty Ltd.

Mr Hutchin has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Hutchin consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The information in this report that relates to database compilation, geological interpretation and mineralisation wireframing, project parameters and costs and overall supervision and direction of the Liontown Mineral Resource estimation is based on and fairly represents, information and supporting documentation compiled under the overall supervision and direction of Mr Hutchin.

Zinc Equivalent Calculation

The net smelter return zinc equivalent (Zn Eq.) calculation adjusts individual grades for all metals included in the metal equivalent calculation applying the following modifying factors: metallurgical recoveries, payability factors (concentrate treatment charges, refining charges, metal payment terms, net smelter return royalties and logistic costs) and metal prices in generating a zinc equivalent value for copper (Cu), lead (Pb), zinc (Zn), gold (Au) and silver (Ag).

Red River has selected to report on a zinc equivalent basis, as zinc is the metal that contributes the most to the net smelter return zinc equivalent (Zn Eq.) calculation. It is the view of Red River Resources that all the metals used in the Zn Eq. formula are expected to be recovered and sold.

Where:

Metallurgical Recoveries are derived from historical metallurgical recoveries from test work carried out the Liontown deposit. The Liontown East deposit is related to and of a similar style of mineralisation to the Liontown Deposit and it is appropriate to apply similar recoveries. The Metallurgical Recovery for each metal is shown below in Table 1.

Metal Prices and Foreign Exchange assumptions are set as per internal Red River price forecasts and are shown below in Table 1.

Table 1 Metallurgical Recoveries and Metal Prices

Metal	Metallurgical Recoveries	Price
Copper	80%	US\$3.00/lb
Lead	70%	US\$0.90/lb
Zinc	88%	US\$1.00/lb
Gold	15%	US\$1,200/oz
Silver	65%	US\$17.00/oz
FX Rate: A\$0.85	:US\$1	

Payable Metal Factors are calculated for each metal and make allowance for concentrate treatment charges, transport losses, refining charges, metal payment terms and logistic costs. It is the view of Red River that three separate saleable base metal concentrates will be produced from Liontown East. Payable metal factors are detailed below in Table 2.

Table 2 Payable Metal Factors

Metal	Payable Metal Factor
Copper	Copper concentrate treatment charges, copper metal refining charges copper metal payment terms (in copper concentrate), logistic costs and net smelter return royalties
Lead	Lead concentrate treatment charges, lead metal payment terms (in lead concentrate), logistic costs and net smelter return royalties
Zinc	Zinc concentrate treatment charges, zinc metal payment terms (in zinc concentrate), logistic costs and net smelter return royalties
Gold	Gold metal payment terms (in copper and lead concentrates), gold refining charges and net smelter return royalties
Silver	Silver metal payment terms (in copper, lead and zinc concentrates), silver refining charges and net smelter return royalties

The zinc equivalent grade is calculated as per the following formula:

Zn Eq. =
$$(Zn\%*1.0) + (Cu\%*3.3) + (Pb\%*0.9) + (Au ppm*0.5) + (Ag ppm*0.025)$$

The following metal equivalent factors used in the zinc equivalent grade calculation has been derived from metal price x Metallurgical Recovery x Payable Metal Factor and have then been adjusted relative to zinc (where zinc metal equivalent factor = 1).

Table 3 Metal Equivalent Factors

Metal	Copper	Lead	Zinc	Gold	Silver
Metal Equivalent Factor	3.3	0.9	1.0	0.5	0.025

APPENDIX 1

Table 5 Drill hole information summary, Liontown Project

Hole ID	Depth (m)	Dip	Azi (MGA)	East (MGA)	North (MGA)	RL (MGA)	Lease ID	Hole Status
LTDD19001	347.78	-49	1	402485	7742710	291	EPM14161	Completed
LTDD19002	257.7	-51	185	402500	7742947	300	ML10277	Completed
LTDD19003	176.5	-61	353	402484	7742763	293	ML10277	Completed
LTDD19004	214.2	-50	8	402459	7742788	295	ML10277	Completed
LTDD19005	224	-47	153	402500	7742947	300	ML10277	Completed
LTDD19007	173.4	-54	356	402586	7742788	294	ML10277	Completed
LTDD19008	279	-61	352	402623	7742789	294	ML10277	Completed
LTDD19010	222.48	-51	172	402642	7742948	306	ML10277	Completed
LTDD19011	158.8	-48	158	402500	7742947	300	ML10277	Completed
LTDD19012	83.9	-51	317	402558	7742906	302	ML10277	Completed
LTDD19013	144.5	-58	172	402642	7742948	306	ML10277	Completed
LTDD19014	116.4	-47	355	402593	7742857	299	ML10277	Completed
LTDD19015	204.8	-48	162	402700	7742957	306	EPM14161	Completed
LTDD19016	112.9	-55	353	402497	7742850	299	ML10277	Completed
LTDD19017	95.2	-58	348	402627	7742894	304	ML10277	Completed
LTDD19018	127.3	-55	33	402500	7742848	299	ML10277	Completed
LTDD19019	108.5	-53	345	402554	7742860	299	ML10277	Completed
LTDD19020	159.5	-66	357	402555	7742859	299	ML10277	Completed
LTDD19021	117.5	-52	345	402667	7742857	301	ML10277	Completed
LTDD19022	148.9	-48	189	402788	7742976	306	EPM14161	Completed
LTDD19023	150.7	-63	345	402667	7742857	301	EPM14161	Completed
LTDD19024	197.4	-57	166	402787	7742977	306	ML10277	Completed*
LTDD19025	102.5	-50	327	402763	7742873	301	EPM14161	Completed*
LTDD19026	93.6	-57	2	402766	7742874	301	EPM14161	Completed*
LTDD19027	104.05	-48	358	402704	7742864	300	ML10277	Completed
LTDD19028	162.5	-52	350	402639	7742830	297	ML10277	Completed
LTDD19029	203.3	-47	349	402585	7742788	294	ML10277	Completed*
LTDD19030	114.5	-53	5	402847	7742885	304	EPM14161	Completed*
LTDD19031	120.5	-52	4	402806	7742875	302	EPM14161	Completed*
LTDD19032	134.3	-50	11	402594	7742855	299	ML10277	Completed*
LTDD19033	78.5	-50	10	402721	7742883	302	ML10277	Completed*
LTDD19034	81.5	-53	355	402694	7742901	305	ML10277	Completed*
LTDD19035	145	-56	335	402651	7742905	305	EPM14161	Completed ⁺
LTDD19036	116.5	-71	347	402627	7742894	304	ML10277	Completed*
*Matarial dri	lling recults an	nounco	d in thic ASV ro	ologco	·			<u> </u>

^{*}Material drilling results announced in this ASX release

^{*}LTDD19035 is a geotechnical drill hole for mine design purposes (no material assay results)

APPENDIX 2
Liontown New Queen Lens Assay Details (LTDD19024)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19024	131.10	131.70	0.60	0.2	0.0	6.7	0.1	1	7.5	Fresh Sulphide
LTDD19024	131.70	132.68	0.98	0.0	0.0	0.8	0.4	6	1.3	Fresh Sulphide
LTDD19024	132.68	133.10	0.42	0.0	0.0	2.1	0.1	0	2.3	Fresh Sulphide
LTDD19024	133.10	134.15	1.05	0.5	0.0	4.1	0.3	3	6.0	Fresh Sulphide
LTDD19024	134.15	134.55	0.40	0.1	0.0	2.9	0.5	3	3.7	Fresh Sulphide
LTDD19024	134.55	134.90	0.35	1.1	0.0	9.4	0.4	5	13.3	Fresh Sulphide
LTDD19024	134.90	135.45	0.55	0.2	0.0	5.9	0.1	3	6.7	Fresh Sulphide
LTDD19024	135.45	136.30	0.85	0.5	1.5	17.6	0.5	11	21.1	Fresh Sulphide
LTDD19024	136.30	136.65	0.35	0.4	0.0	4.9	0.4	2	6.4	Fresh Sulphide
LTDD19024	136.65	137.30	0.65	0.2	0.0	7.8	0.1	3	8.8	Fresh Sulphide
LTDD19024	137.30	138.60	1.30	0.1	3.2	8.0	0.1	10	11.7	Fresh Sulphide
LTDD19024	138.60	139.00	0.40	0.1	0.0	5.3	0.1	1	5.8	Fresh Sulphide
LTDD19024	139.00	139.40	0.40	0.4	0.7	9.9	0.2	8	11.9	Fresh Sulphide
LTDD19024	139.40	140.00	0.60	0.0	0.0	1.3	0.0	7	1.7	Fresh Sulphide
LTDD19024	140.00	140.70	0.70	0.0	0.0	0.9	0.0	2	1.2	Fresh Sulphide
LTDD19024	140.70	141.10	0.40	0.3	0.1	6.2	0.2	18	7.7	Fresh Sulphide
LTDD19024	141.10	141.50	0.40	0.0	0.1	1.1	0.1	5	1.5	Fresh Sulphide
LTDD19024	141.50	142.20	0.70	0.1	0.3	2.7	0.2	5	3.4	Fresh Sulphide
LTDD19024	142.20	143.00	0.80	0.5	2.7	10.1	0.2	20	14.7	Fresh Sulphide
LTDD19024	143.00	144.40	1.40	0.1	1.4	3.6	0.2	9	5.4	Fresh Sulphide
LTDD19024	144.40	145.00	0.60	0.0	0.6	0.8	0.0	1	1.3	Fresh Sulphide
LTDD19024	145.00	146.00	1.00	0.0	0.0	0.0	0.0	0	0.1	Fresh Sulphide
LTDD19024	146.00	146.65	0.65	0.0	0.0	0.1	0.0	0	0.1	Fresh Sulphide
LTDD19024	146.65	147.00	0.35	0.0	0.3	0.4	0.0	0	0.7	Fresh Sulphide
LTDD19024	147.00	147.30	0.30	0.1	1.4	4.2	0.2	3	6.0	Fresh Sulphide
LTDD19024	147.30	148.15	0.85	0.1	1.1	2.4	0.8	4	4.1	Fresh Sulphide
LTDD19024	148.15	148.50	0.35	0.0	0.2	0.3	0.6	1	0.9	Fresh Sulphide
LTDD19024	148.50	148.80	0.30	0.0	1.0	1.8	1.7	6	3.7	Fresh Sulphide
LTDD19024	148.80	149.30	0.50	0.1	0.2	1.0	1.2	2	2.1	Fresh Sulphide
LTDD19024	161.50	162.80	1.30	0.0	0.0	0.0	0.0	0	0.1	Fresh Sulphide
LTDD19024	162.80	163.65	0.85	0.0	0.0	0.1	0.9	7	0.8	Fresh Sulphide
LTDD19024	163.65	164.30	0.65	0.0	0.0	0.0	0.1	2	0.2	Fresh Sulphide
LTDD19024	164.30	165.00	0.70	0.0	0.0	0.7	0.3	6	1.1	Fresh Sulphide
LTDD19024	165.00	165.95	0.95	0.0	0.0	0.5	0.3	3	0.9	Fresh Sulphide
LTDD19024	165.95	167.00	1.05	0.1	0.6	1.6	0.2	3	2.4	Fresh Sulphide
LTDD19024	167.00	167.70	0.70	0.0	0.4	1.5	0.3	3	2.3	Fresh Sulphide
LTDD19024	167.70	168.75	1.05	0.1	1.5	3.1	0.8	43	6.3	Fresh Sulphide
LTDD19024	168.75	169.80	1.05	0.2	1.5	4.3	1.6	15	7.5	Fresh Sulphide
LTDD19024	169.80	170.35	0.55	0.1	0.1	0.8	0.7	21	2.2	Fresh Sulphide
LTDD19024	170.35	171.00	0.65	0.1	0.5	1.9	0.1	7	3.0	Fresh Sulphide
LTDD19024	171.00	172.35	1.35	0.1	0.0	0.1	0.0	2	0.5	Fresh Sulphide
LTDD19024	172.35	172.90	0.55	0.3	0.4	1.8	0.1	21	3.8	Fresh Sulphide
LTDD19024	172.90	173.40	0.50	0.3	0.3	2.2	1.5	84	6.4	Fresh Sulphide
LTDD19024	173.40	174.10	0.70	0.1	0.2	0.8	0.1	14	1.6	Fresh Sulphide
LTDD19024	174.10	174.40	0.30	0.0	0.9	2.4	0.2	26	4.1	Fresh Sulphide
LTDD19024	174.40	175.10	0.70	0.0	0.1	0.3	0.1	14	0.7	Fresh Sulphide
LTDD19024	175.10	176.00	0.90	0.0	0.1	0.2	0.1	3	0.5	Fresh Sulphide
LTDD19024	176.00	177.00	1.00	0.0	1.2	2.2	0.3	4	3.6	Fresh Sulphide
LTDD19024	177.00	177.65	0.65	0.1	1.9	4.2	0.6	11	6.7	Fresh Sulphide
Downhole widt		1,7.05	0.03	1 0.1	1.5	T Z	1 0.0	,	1 0.7	. restr sulpillue

Liontown New Queen Lens Assay Details (LTDD19024 - continued)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19024	177.65	178.10	0.45	0.1	4.6	10.7	2.1	32	17.1	Fresh Sulphide
LTDD19024	178.10	178.80	0.70	0.1	1.0	1.8	1.0	4	3.5	Fresh Sulphide
LTDD19024	178.80	179.30	0.50	0.1	2.1	4.8	0.6	12	7.6	Fresh Sulphide
LTDD19024	179.30	179.60	0.30	0.1	1.8	3.9	0.7	12	6.4	Fresh Sulphide
LTDD19024	179.60	180.00	0.40	0.2	2.6	5.7	0.7	18	9.5	Fresh Sulphide
LTDD19024	180.00	181.00	1.00	0.1	2.3	4.4	4.2	19	9.5	Fresh Sulphide
LTDD19024	181.00	182.00	1.00	0.1	1.1	2.0	3.0	15	5.1	Fresh Sulphide
Downhole width only										

Liontown New Queen Lens Assay Details (LTDD19025)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19025	61.00	61.70	0.70	0.0	0.6	2.8	0.1	2	3.5	Fresh Sulphide
LTDD19025	61.70	62.00	0.30	0.1	1.9	15.7	0.2	28	18.7	Fresh Sulphide
LTDD19025	62.00	63.50	1.50	0.1	1.1	12.3	0.4	17	14.1	Fresh Sulphide
LTDD19025	63.50	64.00	0.50	0.0	0.7	10.3	0.5	11	11.4	Fresh Sulphide
LTDD19025	64.00	65.00	1.00	0.0	0.1	0.1	0.1	1	0.3	Fresh Sulphide
LTDD19025	65.00	66.10	1.10	0.0	0.0	0.1	0.1	1	0.2	Fresh Sulphide
LTDD19025	66.50	67.00	0.50	0.0	0.0	0.6	0.1	0	0.6	Fresh Sulphide
LTDD19025	67.00	68.00	1.00	0.0	0.0	0.8	0.0	0	0.9	Fresh Sulphide
LTDD19025	68.00	69.00	1.00	0.0	0.0	1.0	0.1	1	1.1	Fresh Sulphide
LTDD19025	69.00	69.90	0.90	0.0	0.0	0.1	0.0	0	0.1	Fresh Sulphide
LTDD19025	69.90	70.90	1.00	0.5	2.1	3.9	0.5	44	8.9	Fresh Sulphide
LTDD19025	70.90	72.00	1.10	0.1	1.2	2.8	0.4	13	4.7	Fresh Sulphide
LTDD19025	72.00	72.70	0.70	0.1	2.5	4.8	0.3	9	7.8	Fresh Sulphide
LTDD19025	72.70	73.35	0.65	0.1	3.5	5.8	0.5	18	9.9	Fresh Sulphide
LTDD19025	73.35	74.00	0.65	0.2	3.7	7.1	0.7	21	11.8	Fresh Sulphide
LTDD19025	74.00	75.00	1.00	0.1	0.1	0.6	0.2	5	1.4	Fresh Sulphide
LTDD19025	75.00	75.20	0.20	0.1	1.0	2.1	0.3	10	3.8	Fresh Sulphide
LTDD19025	75.20	76.00	1.00	0.1	2.0	3.5	0.3	15	6.2	Fresh Sulphide
LTDD19025	76.00	77.00	1.00	0.1	3.4	7.7	0.2	14	11.5	Fresh Sulphide
LTDD19025	77.00	78.00	1.00	0.1	2.2	3.9	0.1	7	6.4	Fresh Sulphide
LTDD19025	78.00	78.60	0.60	0.1	8.0	1.9	0.2	3	2.9	Fresh Sulphide
LTDD19025	78.60	79.60	1.00	0.1	1.4	2.7	0.1	5	4.3	Fresh Sulphide
LTDD19025	79.60	80.30	0.70	0.1	2.2	3.7	1.3	10	7.0	Fresh Sulphide
LTDD19025	80.30	81.30	1.00	0.0	0.1	0.2	0.0	1	0.4	Fresh Sulphide
LTDD19025	81.30	82.00	0.70	0.0	0.0	0.4	0.0	1	0.5	Fresh Sulphide
LTDD19025	82.00	83.00	1.00	0.0	0.1	0.5	0.1	2	0.6	Fresh Sulphide
LTDD19025	83.00	84.00	1.00	0.0	0.4	1.3	0.2	4	1.9	Fresh Sulphide
LTDD19025	84.00	85.00	1.00	0.1	1.6	2.4	0.3	22	4.8	Fresh Sulphide
LTDD19025	85.00	86.00	1.00	0.4	6.4	11.4	4.1	38	21.4	Fresh Sulphide
LTDD19025	86.00	86.80	0.80	0.2	4.4	8.5	0.4	15	13.8	Fresh Sulphide
LTDD19025	86.80	87.75	0.95	0.0	0.9	1.9	0.4	5	3.1	Fresh Sulphide
LTDD19025	87.75	88.80	1.05	0.0	0.6	1.0	0.3	12	2.0	Fresh Sulphide
LTDD19025	88.80	89.80	1.00	0.1	1.5	2.9	1.1	16	5.4	Fresh Sulphide
LTDD19025	89.80	90.40	0.60	0.1	3.0	6.1	1.9	82	12.3	Fresh Sulphide
Downhole wid	th only							-		

Liontown New Queen Lens Assay Details (LTDD19026)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19026	56.50	57.00	0.50	0.4	0.1	5.9	0.3	3	7.6	Fresh Sulphide
LTDD19026	57.00	57.50	0.50	0.0	0.0	0.3	0.2	1	0.5	Fresh Sulphide
LTDD19026	57.50	58.10	0.60	0.0	0.1	0.8	0.6	7	1.5	Fresh Sulphide
LTDD19026	58.10	58.40	0.30	0.0	0.2	0.4	0.8	16	1.4	Fresh Sulphide
LTDD19026	58.40	59.40	1.00	0.2	4.7	10.3	7.1	75	20.5	Fresh Sulphide
LTDD19026	59.40	60.20	0.80	0.1	4.1	9.7	1.7	26	15.1	Fresh Sulphide
LTDD19026	60.20	60.40	0.20	0.0	2.4	5.9	1.0	15	9.1	Fresh Sulphide
LTDD19026	60.40	61.00	0.60	0.0	0.2	0.9	0.1	0	1.1	Fresh Sulphide
LTDD19026	61.00	61.90	0.90	0.0	0.3	0.8	0.0	1	1.1	Fresh Sulphide
LTDD19026	61.90	63.10	1.20	0.0	0.4	1.3	0.8	16	2.6	Fresh Sulphide
LTDD19026	63.10	64.00	0.90	0.1	0.5	1.9	1.6	32	4.1	Fresh Sulphide
LTDD19026	64.00	65.00	1.00	0.0	0.3	0.7	0.0	0	1.1	Fresh Sulphide
LTDD19026	65.00	66.00	1.00	0.0	0.0	0.5	0.1	1	0.6	Fresh Sulphide
LTDD19026	66.00	67.00	1.00	0.0	0.1	0.5	0.1	0	0.6	Fresh Sulphide
LTDD19026	67.00	68.00	1.00	0.0	0.5	1.3	0.1	0	1.9	Fresh Sulphide
LTDD19026	68.00	68.50	0.50	0.0	0.2	1.3	0.1	0	1.5	Fresh Sulphide
LTDD19026	68.50	69.10	0.60	0.0	0.0	0.3	0.1	0	0.4	Fresh Sulphide
LTDD19026	69.30	70.00	0.70	0.0	0.0	0.1	0.4	1	0.4	Fresh Sulphide
LTDD19026	70.00	70.95	0.95	0.2	0.0	1.9	0.1	3	2.9	Fresh Sulphide
LTDD19026	70.95	71.60	0.65	0.0	0.4	0.9	0.0	1	1.3	Fresh Sulphide
LTDD19026	71.60	72.00	0.40	0.1	0.7	2.0	0.1	2	2.9	Fresh Sulphide
LTDD19026	72.00	72.65	0.65	0.1	2.5	4.8	0.3	13	7.9	Fresh Sulphide
LTDD19026	72.65	73.40	0.75	0.2	4.8	8.4	0.3	10	13.8	Fresh Sulphide
LTDD19026	73.40	73.90	0.50	0.5	0.1	5.6	0.1	2	7.5	Fresh Sulphide
Downhole widt	h only									

Liontown New Queen Lens Assay Details (LTDD19029)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19029	130.00	131.00	1.00	0.0	0.0	0.2	0.0	2	0.3	Fresh Sulphide
LTDD19029	131.30	132.00	0.70	0.0	0.8	1.7	0.4	50	4.0	Fresh Sulphide
LTDD19029	132.00	133.00	1.00	0.1	0.6	0.9	0.1	14	2.1	Fresh Sulphide
LTDD19029	133.00	133.84	0.84	0.1	0.7	1.2	0.1	8	2.2	Fresh Sulphide
LTDD19029	133.84	134.50	0.66	0.1	0.8	1.3	0.2	8	2.5	Fresh Sulphide
LTDD19029	134.50	135.50	1.00	0.2	3.3	5.1	0.3	29	9.7	Fresh Sulphide
LTDD19029	135.50	136.00	0.50	0.0	0.2	0.3	0.1	3	0.7	Fresh Sulphide
LTDD19029	136.00	136.75	0.75	0.0	0.2	1.4	0.1	2	1.8	Fresh Sulphide
LTDD19029	136.75	138.00	1.25	0.2	1.2	3.8	0.1	5	5.7	Fresh Sulphide
LTDD19029	138.00	139.00	1.00	0.1	0.7	1.7	0.1	4	2.8	Fresh Sulphide
LTDD19029	139.00	139.60	0.60	0.2	2.3	4.8	0.2	5	7.7	Fresh Sulphide
LTDD19029	139.60	140.25	0.65	0.0	1.4	2.3	0.0	3	3.8	Fresh Sulphide
LTDD19029	140.25	141.00	0.75	0.0	0.3	0.9	0.1	6	1.4	Fresh Sulphide
LTDD19029	141.00	141.60	0.60	0.1	0.5	1.6	0.0	5	2.4	Fresh Sulphide
LTDD19029	141.60	142.00	0.40	0.2	0.0	5.8	0.0	2	6.5	Fresh Sulphide
LTDD19029	142.00	143.00	1.00	0.1	0.0	2.9	0.0	4	3.4	Fresh Sulphide
LTDD19029	143.00	144.00	1.00	0.0	0.0	1.7	0.0	2	1.9	Fresh Sulphide
LTDD19029	144.00	145.00	1.00	0.0	0.0	0.1	0.1	3	0.3	Fresh Sulphide
LTDD19029	145.00	146.00	1.00	0.6	0.0	0.1	0.1	4	2.2	Fresh Sulphide
LTDD19029	146.00	146.55	0.55	0.7	0.0	0.1	0.1	5	2.7	Fresh Sulphide
LTDD19029	146.55	147.14	0.59	0.1	0.0	4.2	0.0	2	4.6	Fresh Sulphide
Downhole widt	h only							·	<u> </u>	·

Liontown Carrington Lode Assay Details (LTDD19029)

	0	,	•	<u>'</u>						
Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19030	188.00	188.68	0.68	7.1	0.3	0.3	12.5	19	-	Fresh Sulphide
LTDD19030	188.68	189.62	0.94	3.9	0.1	0.1	0.2	6	-	Fresh Sulphide
LTDD19030	189.62	190.45	0.83	0.4	0.0	0.0	0.0	0	-	Fresh Sulphide
LTDD19030	190.45	191.15	0.70	12.9	0.0	0.1	0.7	20	-	Fresh Sulphide
LTDD19030	191.15	191.50	0.35	0.4	0.0	0.0	0.0	1	-	Fresh Sulphide
LTDD19030	191.50	192.10	0.60	2.8	0.0	0.1	0.2	5	-	Fresh Sulphide
LTDD19030	192.10	192.65	0.55	10.6	0.0	0.1	0.4	16	-	Fresh Sulphide
LTDD19030	192.65	193.40	0.75	0.0	0.0	0.0	0.0	0	-	Fresh Sulphide
LTDD19030	193.40	194.00	0.60	0.3	0.0	0.0	0.0	0	-	Fresh Sulphide
LTDD19030	194.00	195.00	1.00	0.1	0.0	0.0	0.0	0	-	Fresh Sulphide
LTDD19030	195.00	196.00	1.00	0.3	0.0	0.0	0.1	2	-	Fresh Sulphide
LTDD19030	196.00	197.00	1.00	0.0	0.0	0.0	0.0	0	-	Fresh Sulphide
LTDD19030	197.00	197.35	0.35	2.5	0.1	0.7	0.2	8	-	Fresh Sulphide
LTDD19030	197.35	198.35	1.00	0.1	0.0	0.0	0.0	0	-	Fresh Sulphide
LTDD19030	198.35	199.35	1.00	7.9	0.1	0.4	0.4	14	-	Fresh Sulphide
Downhole wid	lth only									

Downhole width only

Zinc Equivalent not calculated for copper dominant mineralisation

Liontown New Queen Lens Assay Details (LTDD19030)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19030	63.00	63.70	0.70	0.1	3.0	6.7	0.1	8	10.1	Fresh Sulphide
LTDD19030	63.70	64.30	0.60	0.0	0.0	0.1	1.8	0	1.0	Fresh Sulphide
LTDD19030	64.30	64.90	0.60	0.0	0.0	0.2	0.0	0	0.2	Fresh Sulphide
LTDD19030	64.90	65.30	0.40	0.3	7.6	13.1	0.6	12	21.6	Fresh Sulphide
LTDD19030	65.30	66.15	0.85	0.0	0.2	0.4	0.0	0	0.6	Fresh Sulphide
LTDD19030	66.15	66.45	0.30	0.1	0.4	2.1	0.0	1	2.6	Fresh Sulphide
LTDD19030	66.45	66.90	0.45	0.3	11.7	19.2	0.4	19	31.5	Fresh Sulphide
LTDD19030	66.90	67.30	0.40	0.0	0.4	1.3	0.0	0	1.7	Fresh Sulphide
LTDD19030	67.30	68.30	1.00	0.2	4.2	9.3	0.8	10	14.3	Fresh Sulphide
Downhole width only										

Liontown Carrington Lode Assay Details (LTDD19030)

	J	•	•	,						
Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19030	99.70	100.60	0.90	7.1	0.1	1.6	0.3	12	-	Fresh Sulphide
LTDD19030	100.60	100.95	0.35	1.1	0.3	0.8	14.9	8	-	Fresh Sulphide
LTDD19030	100.95	101.30	0.35	0.5	0.4	1.5	6.9	4	-	Fresh Sulphide
LTDD19030	101.30	102.00	0.70	0.0	0.0	0.1	0.1	0	-	Fresh Sulphide
LTDD19030	102.00	102.80	0.80	0.3	0.0	0.2	0.1	1	-	Fresh Sulphide
LTDD19030	102.80	103.60	0.80	2.2	1.9	7.3	17.2	18	-	Fresh Sulphide
LTDD19030	103.60	104.40	0.80	1.9	1.1	7.0	3.5	16	-	Fresh Sulphide
LTDD19030	104.40	104.70	0.30	0.5	0.3	0.9	17.0	5	-	Fresh Sulphide
LTDD19030	104.70	105.30	0.60	1.5	1.8	4.3	20.0	18	-	Fresh Sulphide
Dammala alla mid	41	•							•	

Downhole width only

Zinc Equivalent not calculated for copper dominant mineralisation

Liontown New Queen Lens Assay Details (LTDD19031)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19031	85.60	86.50	0.90	0.1	0.6	1.2	0.2	2	2.4	Fresh Sulphide
LTDD19031	86.50	87.20	0.70	0.0	0.2	0.4	0.1	2	0.8	Fresh Sulphide
LTDD19031	87.20	88.20	1.00	0.0	0.5	1.0	0.2	3	1.8	Fresh Sulphide
LTDD19031	88.20	89.10	0.90	0.0	1.1	2.5	0.9	4	4.2	Fresh Sulphide
LTDD19031	89.10	89.50	0.40	0.0	0.5	0.9	0.1	3	1.4	Fresh Sulphide
LTDD19031	89.50	90.05	0.55	0.0	0.3	0.7	0.3	11	1.3	Fresh Sulphide
LTDD19031	90.05	90.70	0.65	0.0	0.1	0.4	0.1	3	0.6	Fresh Sulphide
LTDD19031	90.70	91.20	0.50	0.1	0.6	6.1	0.1	2	7.0	Fresh Sulphide
LTDD19031	91.20	92.00	0.80	0.0	0.2	0.4	0.1	2	0.7	Fresh Sulphide
LTDD19031	92.00	92.30	0.30	0.1	1.0	2.1	0.0	2	3.3	Fresh Sulphide
LTDD19031	92.30	92.80	0.50	0.0	1.1	0.9	0.0	2	2.0	Fresh Sulphide
LTDD19031	92.80	93.40	0.60	0.1	0.7	1.3	0.1	1	2.2	Fresh Sulphide
Downhole widt	Downhole width only									

Liontown New Queen Lens Assay Details (LTDD19032)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19032	65.90	67.00	1.10	0.0	0.5	1.7	0.1	249	8.4	Fresh Sulphide
LTDD19032	67.00	68.00	1.00	0.0	0.0	0.1	0.1	1	0.2	Fresh Sulphide
LTDD19032	68.00	69.00	1.00	0.0	0.1	0.2	0.1	3	0.4	Fresh Sulphide
LTDD19032	69.00	69.35	0.35	0.0	1.3	1.3	0.0	6	2.8	Fresh Sulphide
LTDD19032	69.60	70.20	0.60	0.0	0.7	1.2	1.0	8	2.7	Fresh Sulphide
LTDD19032	70.20	70.90	0.70	0.0	0.6	1.4	1.3	6	2.8	Fresh Sulphide
LTDD19032	70.90	71.50	0.60	0.0	0.0	0.2	0.4	4	0.6	Fresh Sulphide
LTDD19032	71.50	72.20	0.70	0.4	5.2	8.3	4.8	74	18.5	Fresh Sulphide
LTDD19032	72.20	72.40	0.20	0.0	0.3	0.6	0.0	3	1.0	Fresh Sulphide
LTDD19032	72.40	72.70	0.30	0.4	1.3	2.3	2.4	24	6.4	Fresh Sulphide
LTDD19032	72.70	73.30	0.60	0.5	1.6	2.8	3.2	32	8.2	Fresh Sulphide
LTDD19032	73.30	74.00	0.70	0.3	4.3	8.1	0.4	47	14.4	Fresh Sulphide
LTDD19032	74.00	75.00	1.00	0.2	2.5	5.0	0.3	27	8.8	Fresh Sulphide
LTDD19032	75.00	76.00	1.00	0.3	2.2	3.5	0.2	12	6.9	Fresh Sulphide
Downhole widt	Downhole width only									

Liontown New Queen Lens Assay Details (LTDD19033)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19033	45.20	46.00	0.80	0.2	5.6	8.2	2.3	94	17.3	Fresh Sulphide
LTDD19033	46.00	46.60	0.60	0.0	1.4	2.0	2.1	33	5.3	Fresh Sulphide
LTDD19033	46.60	47.80	1.20	0.0	0.9	1.4	1.4	23	3.6	Fresh Sulphide
LTDD19033	47.80	48.15	0.35	0.0	0.0	0.3	0.3	6	0.7	Fresh Sulphide
LTDD19033	48.15	49.00	0.85	0.0	0.0	0.2	0.0	0	0.2	Fresh Sulphide
LTDD19033	49.00	50.00	1.00	0.0	0.0	0.4	0.0	0	0.4	Fresh Sulphide
LTDD19033	50.00	51.90	1.90	0.0	0.5	1.9	0.1	13	2.9	Fresh Sulphide
LTDD19033	51.90	52.33	0.43	0.1	0.9	3.1	0.2	16	4.6	Fresh Sulphide
LTDD19033	52.33	52.76	0.43	0.1	0.5	1.9	0.2	13	3.0	Fresh Sulphide
LTDD19033	52.76	53.07	0.31	0.2	0.1	2.4	0.6	10	3.7	Fresh Sulphide
LTDD19033	53.07	53.80	0.73	0.1	1.0	2.2	2.4	13	5.0	Fresh Sulphide
LTDD19033	53.80	55.25	1.45	0.2	1.0	2.7	18.3	50	14.6	Fresh Sulphide
Downhole width only										

Liontown New Queen Lens Oxide Assay Details (LTDD19034)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19034	31.80	32.75	0.95	0.1	2.6	0.1	3.9	940	-	Oxide
LTDD19034	32.75	33.50	0.75	0.4	40.6	0.4	9.5	619	-	Oxide
LTDD19034	33.50	34.00	0.50	0.1	1.1	0.1	2.4	112	-	Oxide
Downhole widt	Downhole width only									
Zinc Equivalent not calculated for oxide mineralisation										

Liontown New Queen Lens Assay Details (LTDD19036)

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19036	48.65	49.00	0.35	0.2	2.6	4.8	2.5	8	9.4	Fresh Sulphide
LTDD19036	49.00	50.00	1.00	0.0	1.3	2.5	0.2	5	4.0	Fresh Sulphide
LTDD19036	50.00	51.00	1.00	0.6	4.5	6.4	6.8	17	16.4	Fresh Sulphide
LTDD19036	51.00	52.00	1.00	0.1	0.7	1.3	0.1	4	2.4	Fresh Sulphide
LTDD19036	52.00	52.40	0.40	0.2	0.0	1.9	0.2	5	2.8	Fresh Sulphide
LTDD19036	52.40	53.10	0.70	0.2	0.6	2.2	0.2	11	3.6	Fresh Sulphide
LTDD19036	53.10	53.70	0.60	0.8	14.4	29.2	5.0	313	55.0	Fresh Sulphide
LTDD19036	53.70	54.70	1.00	0.1	0.3	0.4	1.4	15	1.9	Fresh Sulphide
LTDD19036	54.70	55.70	1.00	0.0	0.1	0.1	0.0	5	0.4	Fresh Sulphide
LTDD19036	55.70	56.20	0.50	0.0	0.0	0.1	0.0	2	0.2	Fresh Sulphide
LTDD19036	56.20	56.80	0.60	0.6	13.2	26.4	12.5	335	54.9	Fresh Sulphide
LTDD19036	56.80	57.30	0.50	0.5	14.3	33.4	6.6	415	61.5	Fresh Sulphide
LTDD19036	57.30	58.00	0.70	0.1	1.0	2.3	0.5	73	5.5	Fresh Sulphide
LTDD19036	58.00	58.60	0.60	0.0	0.4	0.6	0.4	8	1.4	Fresh Sulphide
LTDD19036	58.60	59.50	0.90	0.0	1.1	1.9	0.8	15	3.7	Fresh Sulphide
LTDD19036	59.50	60.00	0.50	0.0	0.1	0.2	0.1	1	0.4	Fresh Sulphide
LTDD19036	60.00	61.00	1.00	0.0	0.1	0.1	0.0	0	0.2	Fresh Sulphide
LTDD19036	61.00	61.80	0.80	0.1	0.7	1.3	0.0	4	2.3	Fresh Sulphide
LTDD19036	61.80	62.40	0.60	0.0	2.3	4.1	0.3	14	6.8	Fresh Sulphide
LTDD19036	62.40	63.00	0.60	0.0	3.5	7.7	0.2	17	11.5	Fresh Sulphide
LTDD19036	63.00	64.00	1.00	0.1	1.0	1.7	0.2	6	3.1	Fresh Sulphide
LTDD19036	64.00	65.00	1.00	0.0	0.4	1.1	0.3	4	1.8	Fresh Sulphide
LTDD19036	65.00	65.50	0.50	0.0	0.9	1.4	0.1	8	2.6	Fresh Sulphide
LTDD19036	65.50	66.00	0.50	0.2	0.2	2.7	0.1	2	3.5	Fresh Sulphide
LTDD19036	66.00	67.00	1.00	0.3	1.9	3.7	0.1	6	6.6	Fresh Sulphide
LTDD19036	67.00	67.65	0.65	0.2	0.9	0.2	0.1	3	1.7	Fresh Sulphide
Downhole width only										

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut	Diamond drilling (DD) techniques were used to
techniques	channels, random chips, or specific	obtain samples.
	specialised industry standard measurement	No samples were collected from mud rotary drilling.
	tools appropriate to the minerals under	Diamond core was placed in core trays for logging
	investigation, such as down hole gamma	and sampling. Half core samples were nominated by
	sondes, or handheld XRF instruments, etc).	the geologist from diamond core based on visual
	These examples should not be taken as	inspection of mineralisation. Intervals ranged from
	limiting the broad meaning of sampling.	0.15 to 1.5m based on geological boundaries
	Include reference to measures taken to	Diamond samples were sawn in half using an onsite
	ensure sample retrospectivity and the	core saw. All Red River samples were sent to Intertek
	appropriate calibration of any measurement	Genalysis Laboratories Townsville.
	tools or systems used.	Samples were crushed to sub 6mm, split and
	Aspects of the determination of	pulverised to sub 75μm in order to produce a
	mineralisation that are Material to the	representative sub-sample for analysis.
	Public Report.	Analysis of all Red River samples consisted of a four- acid digest and Inductively Coupled Plasma Optical
	In cases where 'industry standard' work has been done this would be relatively simple	Emission Spectrometry (ICP-OES) for the following
	(eg 'reverse circulation drilling was used to	elements; Ag, As, Ba, Bi, Ca, Cu, Fe, K, Mg, Mn, Na,
	obtain 1 m samples from which 3 kg was	Pb, S, Sb, Ti, Zn, & Zr was undertaken. A selection of
	pulverised to produce a 30 g charge for fire	samples was also assayed for Au using a 25g Fire
	assay'). In other cases, more explanation	Assay technique.
	may be required, such as where there is	rissa, cominque.
	coarse gold that has inherent sampling	
	problems. Unusual commodities or	
	mineralisation types (eg submarine nodules)	
	may warrant disclosure of detailed	
	information.	
Drilling	Drill type (eg core, reverse circulation,	Red River diamond drilling techniques consist of;
techniques	open-hole hammer, rotary air blast, auger,	HQ3 diamond core drilling until competent rock
	Bangka, sonic, etc) and details (eg core	NQ2 diamond core and navigational drilling for the
	diameter, triple or standard tube, depth of	remainder of the drill holes.
	diamond tails, face-sampling bit or other	
	type, whether core is oriented and if so, by	
	what method, etc).	
Drill sample	Method of recording and assessing core and	Sample recovery is measured and recorded by
recovery	chip sample recoveries and results assessed.	company trained geology technicians.
	Measures taken to maximise sample recovery and ensure representative nature	Minimal core loss mostly at the top of the drill hole has been recorded at Liontown.
	of the samples.	Recovery in ore zones from Liontown Resources
	Whether a relationship exists between	Limited diamond drilling is typically 100%.
	sample recovery and grade and whether	Limited diamond drining is typically 100%.
	sample bias may have occurred due to	
	preferential loss/gain of fine/coarse	
	material.	
Logging	Whether core and chip samples have been	Holes are logged to a level of detail that would
-0991119	geologically and geotechnically logged to a	support mineral resource estimation.
	level of detail to support appropriate	Qualitative logging includes lithology, alteration and
	Mineral Resource estimation, mining	textures.
	studies and metallurgical studies.	Quantitative logging includes sulphide and gangue
	Whether logging is qualitative or	mineral percentages.
	quantitative in nature. Core (or costean,	All drill core was photographed.
	channel, etc) photography.	All drill holes have been logged in full.

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the	
	relevant intersections logged.	
Sub-sampling	If core, whether cut or sawn and whether	Core was sawn, and half core sent for assay.
techniques	quarter, half or all core taken.	Sample preparation is industry standard, occurring at
and sample	If non-core, whether riffled, tube sampled,	an independent commercial laboratory which has its
preparation	rotary split, etc and whether sampled wet	own internal Quality Assurance and Quality Control
' '	or dry.	procedures.
	For all sample types, the nature, quality and	Samples were crushed to sub 6mm, split and
	appropriateness of the sample preparation	pulverised to sub 75μm in order to produce a
	technique.	representative sub-sample for analysis.
	Quality control procedures adopted for all sub-sampling stages to maximise	Laboratory certified standards were used in each
	representivity of samples.	sample batch. The sample sizes are considered to be appropriate to
	Measures taken to ensure that the sampling	correctly represent the mineralisation style.
	is representative of the in-situ material	correctly represent the mineralisation style.
	collected, including for instance results for	
	field duplicate/second-half sampling.	
	Whether sample sizes are appropriate to	
	the grain size of the material being sampled.	
Quality of	The nature, quality and appropriateness of	The assay methods employed are considered
assay data	the assaying and laboratory procedures	appropriate for near total digestion.
and	used and whether the technique is	Laboratory certified standards were used in each
laboratory	considered partial or total.	sample batch.
tests	For geophysical tools, spectrometers,	Certified standards returned results within an
	handheld XRF instruments, etc, the	acceptable range.
	parameters used in determining the analysis	No field duplicates are submitted for diamond core.
	including instrument make and model, reading times, calibrations factors applied	
	and their derivation, etc.	
	Nature of quality control procedures	
	adopted (eg standards, blanks, duplicates,	
	external laboratory checks) and whether	
	acceptable levels of accuracy (ie lack of bias)	
	and precision have been established.	
Verification	The verification of significant intersections	Laboratory results have been reviewed by Company
of sampling	by either independent or alternative	geologists and laboratory technicians.
and assaying	company personnel.	No twinned holes were drilled for this data set.
	The use of twinned holes.	
	Documentation of primary data, data entry	
	procedures, data verification, data storage	
	(physical and electronic) protocols. Discuss any adjustment to assay data.	
Location of	Accuracy and quality of surveys used to	A portion of Red River collars surveyed with RTKGPS
Location of data points	locate drill holes (collar and down-hole	and others by hand-held GPS as noted in Table 2. Re-
αστα μοπτις	surveys), trenches, mine workings and other	survey of 105 historic drill collars was carried out by
	locations used in Mineral Resource	Liontown Resources Limited.
	estimation.	Down hole surveys conducted with digital magnetic
	Specification of the grid system used.	multi-shot camera at 20-40m intervals by Red River
	Quality and adequacy of topographic	Resources. A portion of drill holes were surveyed by
	control.	multi-shot survey .
		Coordinate system used is MGA94 Zone 55
		Topographic control is based on a detailed 3D Digital
		Elevation Model .

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The current drill spacing is approximately 40-150m. No sample compositing has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drill holes are orientated perpendicular to the perceived strike of the host lithologies where possible. The orientation of the multiple lenses varies resulting in some holes resulting in less than perpendicular intersections. Drill holes are drilled at a dip based on logistics and dip of anomaly to be tested. The orientation of the drilling is designed to not bias sampling. Orientation of the HQ3 core was undertaken to define structural orientation.
Sample security	The measures taken to ensure sample security.	Samples have been overseen by company staff during transport from site to Intertek Genalysis laboratories, Townsville.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out at this point.

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The drilling was conducted on Mining Lease 10277 and Exploration Permit EPM 14161. ML 10277 and EPM 14161 are held by Cromarty Pty Ltd. (a wholly owned subsidiary of Red River Resources) and forms part of Red River's Thalanga Zinc Project. Red River engaged Native Title Claimants, the Gudjalla People to conduct cultural clearances of drill pads and access tracks The Exploration Permits are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic Exploration was carried out by Esso Exploration, Liontown Resources, Nickle Mines, Great Mines & Pan Continental Mining. Work programs included drilling and geophysics
Geology	Deposit type, geological setting and style of mineralisation.	The exploration model is Volcanic Hosted Massive Sulphide (VHMS) base metal mineralisation. The regional geological setting is the Mt Windsor Volcanic Sub-province, consisting of Cambro-Ordovician marine volcanic and volcano-sedimentary sequences.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is the case.	See Table 2 – Drill Hole Details See Appendix 1 – Assay Details
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Interval length weighted assay results are reported Significant Intercepts relate to assay results > 5% Zn Equivalent. Zn equivalent formula utilised is: Zn% + (Cu%*3.3) + (Pb%*0.9) + (Au ppm*0.5) + (Ag ppm*0.025). Where core loss occurs the average length-weighted grade of the two adjacent samples were attributed to the interval for the purpose of calculating intersection. The maximum interval of missing core incorporated in the reported intersection is 1 metre.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The mineralisation is interpreted to be dipping at approximately 65 to 90 degrees, drill holes have been designed to intercept the mineralisation as close to perpendicular as possible.

Criteria	JORC Code explanation	Commentary
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Down hole intercepts are reported. True widths are likely to be approximately 30 to 80% of the down hole widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections.	Refer to plans and sections within report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported.	All meaningful and material data is reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further Drilling at Liontown is ongoing.