

Suite 8, 7 The Esplanade, Mt Pleasant, WA 6153

> E info@gbmr.com.au **P** +61 (8) 9316 9100 F +61 (8) 9315 5475

> > gbmr.com.au

ABN 91 124 752 745

ASX Announcement 23 December 2020

Mt Coolon and Yandan Combined Resources Total 852,000 oz, following completion of Yandan acquisition

Highlights

- GBM Resources Limited (ASX:GBZ) (GBM or the Company) advises that all conditions precedent have now been completed for the acquisition of the Yandan Gold Project (through the purchase of all issued share capital in Straits Gold Pty Limited), from Aeris Resources Limited (ASX:AIS) (Aeris). Completion date for the acquisition is confirmed to occur on 13 January 2021. A new JORC 2012 Mineral Resource estimate for the two deposits at the Yandan Gold Project (East Hill and South Hill) totals 521,000 ounces.
- The Combined Mineral Resource estimate for the Yandan Gold Project (Yandan) and the Mt Coolon Gold Project (Mt Coolon) now totals 28.2 Mt at 0.9 g/t Au for 852 koz^{3,6} This is a significant step in GBM's 'processing halo' strategy to build +1 million ounces within the Mt Coolon region which provides an entry to develop into a mid-tier Australian gold company.
- Yandan historically produced approximately 350,000 ounces of gold^{1,2}. The site includes established mine infrastructure such as power, water dams and access to the Suttor River, tailings and previous plant footprint, strategically located ~40 km west of Mount Coolon in the Drummond Basin.
- The potential for additional discoveries and resource growth is considered high and in particular around the high grade portion of the East Hill deposit which remains open at depth and down plunge from the currently defined mineralised system.
- Exploration in 2021 at the Yandan Project, will focus on Infill drilling between the Main Pit and East Hill deposits to expand resources, upgrade the existing non-compliant resource at the Illamahta Prospect and review Northeast Ridge for oxide resource.

Peter Rohner, Managing Director and CEO, commented:

"This upgrade of the Yandan resources to JORC 2012 represents an important milestone in the Company's Drummond Basin "processing halo" strategy and delivers a step change in the company's resource base, with GBM now controlling JORC (2012) compliant Mineral Resources in excess of 852,000 ounces of gold at Mt Coolon and Yandan, predominantly on registered mining leases with established mine infrastructure. We will expand our exploration and drilling plans for 2021, to advance the combined projects and continue to build resource ounces through discovery and acquisition."

¹ Yandan Gold Deposit, Drummond Basin, QLD, R.N. Carver and L.M Chenoweth, CRC LEME 2003

² Drummond Gold (ASX:DGO) Quarterly Report 31 December 2010

https://web.archive.org/web/20110302012833/http://www.drummondgold.com.au/pdf_news/february_2011/20110127_Quarterly_Report _for_31_December2010.pdf ³ GBM Mineral Resource Estimate for Mount Coolon Gold Project – Appendix 3

⁶ East Hill and South Hill Mineral Resource Estimate, Mining Associates 30/11/2020 – Appendix 4

GBM Resources Limited (ASX: GBZ) (**GBM** or **the Company**) is pleased to announce that, as a result of inclusion of JORC 2012 Mineral Resource estimates for Yandan, the Mount Coolon processing halo now contains, an estimated 851,500 ounces of gold.

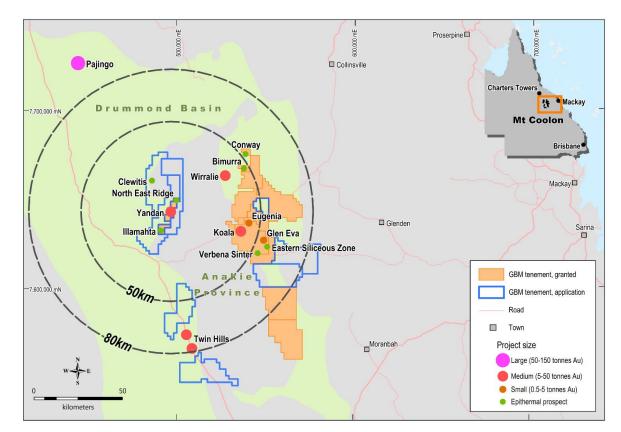


Figure 1: Mt Coolon/Yandan Gold Project Location and New Tenement Applications (Blue Outlines)

GBM resources holds a large, strategic, tenement holding in the Drummond Basin comprising a total of 16 exploration permits (and applications) covering an area in excess of 4,000 square kilometres. This area hosts multiple targets for further discovery of epithermal gold mineralisation and resource extension to further build on the Company's 'processing halo' strategy of + 1 million ounces. Discussions are ongoing on another acquiring another key asset in the basin.

The upgrade to JORC 2012 status of historic gold resources at the East Hill and South Hill deposits at Yandan have resulted in a revised Mineral Resource of 21.5 Mt at 0.8 g/t for 521,000 ounces of gold.

Both the existing Mount Coolon deposits (Koala, Glen Eva and Eugenia) and the Yandan deposits (East Hill and South Hill) are considered by GBM to hold significant exploration upside.

Cautionary Statement - Ownership

The Yandan assets, including the Yandan Mineral Resource, are not owned by GBM. Completion date for the acquisition is confirmed for 13 January 2021.

													RES	OURCES LTD
Project	Location				Reso	Resource Category								Cut-off
			Measured			Indicated			Inferred					
		000' t	Au g/t	Au oz	000' t	Au g/t	Au oz	000' t	Au g/t	Au oz	000' t	Au g/t	Au oz	
Koala	Open Pit				670	2.6	55,100	440	1.9	26,700	1,120	2.3	81,800	0.4
	UG Extension				50	3.2	5,300	260	4	34,400	320	3.9	39,700	2.0
	Tailings	114	1.7	6,200	9	1.6	400				124	1.6	6,600	1.0
	Total	114	1.7	6,200	729	2.6	60,800	700	2.7	61,100	1,563	2.5	128,100	
Eugenia	Oxide				885	1.1	32,400	597	1.0	19,300	1,482	1.1	51,700	0.4
	Sulphide				905	1.2	33,500	1,042	1.2	38,900	1,947	1.2	72,400	0.4
	Total				1,790	1.1	65,900	1,639	1.1	58,200	3,430	1.1	124,100	
Glen Eva	Total Open Pit				1,070	1.6	55,200	580	1.2	23,100	1,660	1.5	78,300	0.4
Yandan	East Hill							20,600	0.8	505,000	20,060	0.8	505,000	0.3
	South Hill							900	0.6	16,000	900	0.6	16,000	0.3
	Total							21,500	0.8	521,000	21,500	0.8	521,000	
	Total	114	1.7	6,200	3,590	1.6	181,900	24,419	0.8	663,400	28,153	0.9	851,500	

Table 1: November 2017 Resource Summary for the MCGP updated to include new JORC 2012 resource estimate for Yandan. Please note rounding (1,000's tonnes, 100's ounces, 0.1 g/t) may cause minor variations to totals. For full details, please refer to ASX release dated the 4th of December 2017.

GBM have competed a detailed review of the geology and exploration potential of Yandan and consider the potential for additional discoveries and resource growth is as high and in particular the high grade East Hill deposit which remains open at depth down plunge from the currently defined mineralised system.

Exploration at the Yandan Project in 2021 will focus on Infill drilling between the Main Pit and East Hill deposits to expand resources, upgrade the existing non-compliant resource at the Illamahta Prospect and review Northeast Ridge for oxide resources.

Key Terms of the Yandan Acquisition with Aeris Resources Limited

- i. As consideration for the Yandan acquisition, GBM will issue Aeris fully paid ordinary shares to the value of A\$3.0 million (22.22 million shares at The Initial Share Price of 13.5 cents).
- ii. GBM will grant to Aeris a 1.5% Net Smelter Royalty (NSR) on the first 300,000 oz of gold equivalent produced from ML1095, ML1096 and EPM8257. This NSR will be registered as security over the Project's Mining and Exploration Licences.
- iii. Aeris will also subscribe to a Placement of A\$1.0 million of fully paid ordinary shares in the capital of GBM, at the same share price which is now confirmed.

GBM received shareholder approval at the AGM on 30th November 2020 for the Yandan acquisition. (*Refer ASX:GBZ announcement dated 19 October 2020 for detailed acquisition terms*)

This ASX announcement was approved and authorised for release by:

Peter Rohner, Managing Director

For further information please contact:

Investor enquiries	Media enquiries
Peter Rohner	Michael Vaughan
Managing Director	Fivemark Partners
+61 8 9316 9100	+61 422 602 720
peter.rohner@gbmex.com.au	michael.vaughan@fivemark.com.au

About GBM Resources

GBM Resources Limited is a mineral exploration and development company focused on the discovery of world-class gold and copper deposits in Eastern Australia. The company has a high calibre project portfolio, hosting district scale mineral systems, located in a number of premier metallogenic terrains including the Drummond Basin, Mt Morgan district and the Mt Isa Inlier in Queensland, and the Malmsbury Project in the prolific Victorian Goldfields. Along with the recently formed JV on the White Dam Gold Project in South Australia in which it holds a 50% interest (in cashflow only).

COMPETENT PERSON STATEMENT

The information in the market announcement provided is an accurate representation of the available data and studies for the material mining project. The information was compiled by Peter Mullens, who is a Fellow of The Australasian Institute of Mining and Metallurgy (Membership No. 107138). Mr Mullens is a holder of shares and options in the company and is a full-time employee of the company. Mr Mullens has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mullens consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in the market announcement provided is an accurate representation of the available data and studies for the material mining project. The Mineral Resource Estimate for Yandan was compiled by Ian Taylor, who is a Member of The Australasian Institute of Mining and Metallurgy (Membership No. 110090). Mr Taylor has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Taylor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

GBM confirms that it is not aware of any new data or information that materially affects the information disclosed in this presentation and previously released by GBM in relation to Mineral Resource estimates on its tenure. All material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Yandan Project Gold Project and Resource Estimate Commentary

The Yandan Project is located approximately 40 km to the west of the township of Mount Coolon and 155 km southeast of Charters Towers, north Queensland. Tenure covers an area of approximately 75 km² and comprises one exploration permit (EPM 8257) and two granted mining leases (ML1095, ML1096). See Figure 5.

Yandan Project Resources – East Hill and South Hill

Within the Yandan project is a revised JORC 2012 Mineral Resource of 21.5 Mt at 0.8 g/t Au for 521,000 ounces of gold at East Hill and South Hill as reported by Mining Associates.

The Mineral Resources is based on a large open pit (~0 to 330 m from surface) at East Hill and a shallower open cut at South Hill.

2020 Inferred Resource (>0.3g/tAu)	Mineralisation (Mt)	Grade (g/t Au)	Gold (koz)
East Hill	20.6	0.8	505
South Hill	0.9	0.6	16
Total	21.5	0.8	521

Within and included in the above resource, at East Hill there exist higher grade mineralised zones shown in the higher grade cut-off table below. This can also be seen in the sections developed by GBM in Figures 2 and 3. Please note rounding (1,000's tonnes, 100's ounces, 0.1 g/t) may cause minor variations to totals.

Area	Cut off	Material (Mt)	Grade (g/t Au)	Gold (koz)
East Hill	> 0.3 to 1.0 g/t	18.7	0.5	292
	> 1.0 to 999	1.9	3.6	218
Sub				
Total		20.6	0.8	505

The potential for additional discovery and further Resource growth is considered high, particularly in the higher grade, potential underground zone and further lower grade zones that may fall inside a larger open pit approach. The East Hill resources remain open at depth down plunge from the currently defined system.

Geology and Resource

The Yandan Project leases are located in Devonian to Carboniferous aged sedimentary and volcanic rocks of the Drummond Basin (Figure 1). The mineral prospects are structurally controlled low sulphidation gold epithermal deposits.

East Hill – sits to the east of the old Main Pit that was mined by Ross Mining. A small open pit was mined on the East Hill resource.

At East Hill three phases of gold mineralisation have been observed associated with silica forming vein arrays. In places the mineralised silica halo is extensive with zones in excess of 100 m not uncommon. Mineralisation can be classified as occurring in either:

- i. Massive silica generally low grade gold mineralised, rarely high grade.
- ii. Massive silica-pyrite low grade gold mineralised.
- iii. Crustiform banded silica-adularia-calcite low to more commonly high grade gold mineralised. Strong buddingtonite alteration common.

The structural and mineralisation history of the East Hill area is interpreted to be as follows:

- a) Basin inversion at end of Drummond Basin cycle 1 deposition results in dextral and reverse faulting on northeast listric faults with the formation of northeast anticlinal fault warps and steep east tension structures. At East Hill the proximity of the basement basin margin accentuates the deformation.
- b) Hydrothermal fluids generated by an unknown heat source up flow predominantly in east structures, concentrated at the intersection with northeast faults. Alteration of the host rock occurs above the boiling zone in a zonation from silica-adularia outward to clays.
- c) At East Hill massive silica veining, low grade Au mineralised, is deposited from upwelling fluids in tension fracturing in approximately 070° and 110° orientations and the alteration zonation is overprinted variably by silica-illite.
- d) Silica-pyrite veining, As and Sb rich low grade Au mineralisation, is deposited by hydrothermal brecciation at East Hill and porosity dissolution infill at Main Pit and South Hill.
- e) Late in the deformation at East Hill, crustiform banded veining with high grade Au, is deposited in approximately 110° striking tension fractures by upwelling fluid boiling and interspersed episodes of mixing with recharge cool carbonate fluid.
- f) Hydrothermal system waning results in kaolinite-siderite alteration overprint by downdrawn carbonate fluids.
- g) Post-mineralisation deformation results in normal faulting on northeast listric structures and sinistral faulting on steep east structures truncating mineralisation.

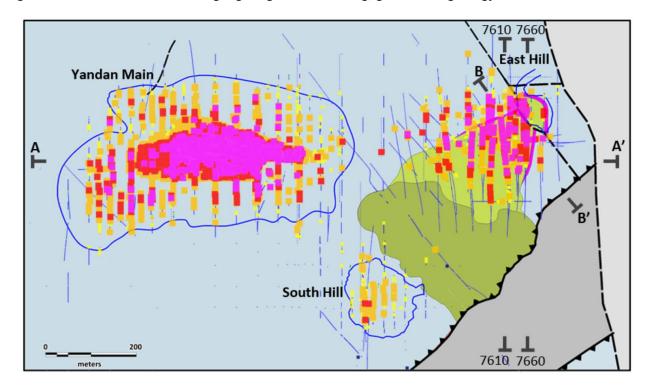
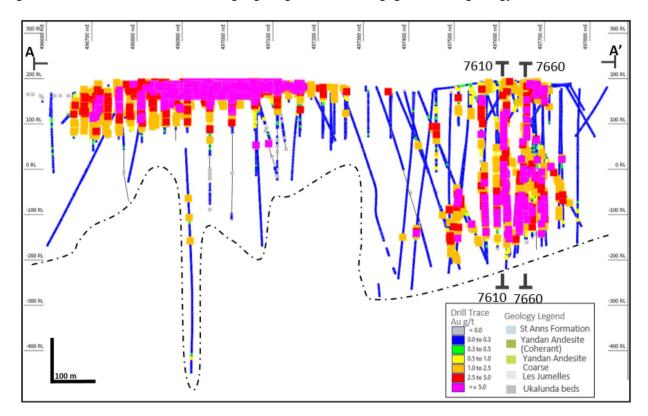



Figure 2: Yandan District Plan – Highlighting historic drilling, grades and geology

Note, the Main Pit and South Hill Pit has been mined and a small pit exists on East Hill. Sections 7610 and 7660 are shown in Figures 4 and 5 and incorporate GBM's revised geological understanding of the project.

Figure 4: Yandan East Hill Section – Highlighting historic drilling, grades and geology (at section 7610)

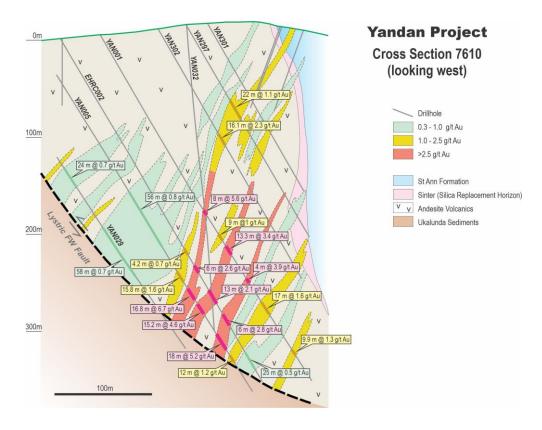
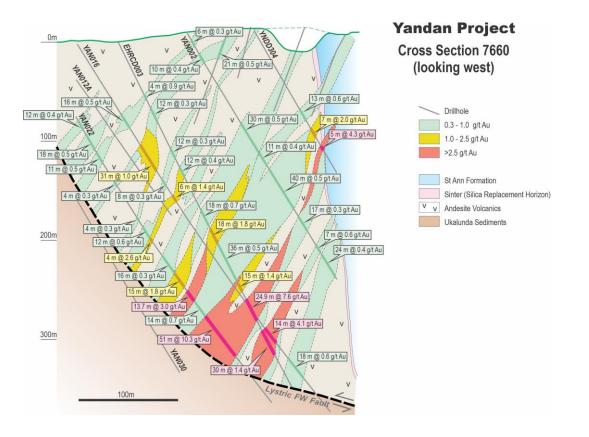



Figure 5: Yandan East Hill Section – Highlighting historic drilling, grades and geology (at section 7660)

Drill Hole	From (m)	To (m)	Length (m)	Au g/t
YAN 005 ⁴	211.0	387.6	176.6	2.4
Includes	300.5	328.0	27.5	8.1
Includes	361.5	370.0	8.5	10.2
YAN 011 ⁵	294.5	378.0	83.5	3.8
Includes	310.7	332.0	21.3	9.8
YAN 013 ⁵	214.3	311.0	96.7	0.8
YAN 014 ⁵	275.0	396.0	121.0	0.6
YAN 016 ⁵	222.1	406.5	185.0	1.0
Includes	307.4	332.0	24.7	2.8
Includes	344.6	356.0	11.4	5.0
YAN 017 ⁵	276.6	368.0	91.4	1.0
Includes	291.2	299.7	8.5	5.2
YAN 018 ⁵	355.0	375.0	20.0	1.5
YAN 022 ⁵	283.0	371.0	88.0	7.9
YAN 023 ⁵	286.4	321.9	35.5	1.1

A selection of the historic drilling includes: (for related results see Appendix 1)

References:

⁴ ASX release – SRQ, Straits Press Release 9 Aug 2005. Yandan east Hill Discovery

⁵ ASX release – SRQ, Straits Quarterly Report period ending March 31 2006

Drilling and Sampling Techniques

This resource is based on samples from 569 drill holes and a total of 60,688 metres of drilling. This comprised 68 pre-collared diamond drill holes for 15,579 metres and 398 reverse circulation drill holes for 39,446 metres. Diamond drill core was sawn in half longitudinally and sampled on a preferred 1.0 metre interval (although a small number of samples range between 0.3m and 2.0m). RC samples were riffle split to a nominal 3 to 5 kg weight for submission to the laboratory. A total of 2618 samples were assayed (1768 diamond and 915 RC).

Analytical Techniques

At the laboratory RC samples and core were pulverised to produce a 30g or 50g charge for gold fire assay analysis with an AAS finish. For further details of individual laboratory techniques please refer to table-1 appended to this release.

Quality control checks and data were not available in digital format for review by Mining Associates. Electronic (pdf) format results were available for straits Resources drilling. GBM plans to transfer this data to an electronic data base for analyses, and search for other company quality control data prior to an upgrade in the resource category to indicated.

Resource Classification

The Yandan deposit has in many areas been drilled on relatively close spacings (Hole spacing is generally on a 25 m by 20 m grid extending to larger and irregular spacing with depth) which would, particularly for a deposit with a demonstrated production history, be considered adequate for classification as indicated or even measured in part. However, the lack of analyses of quality control data and production data supporting reconciliation has resulted in this resource being classified as inferred at this time.

Estimation Methodology

- Estimation undertaken in Surpac 7.3.
- Experimental Variograms were generated in Supervisor and Surpac. Experimental Variograms were poorly formed, due to the grade distribution expected in a epithermal gold-silver deposits. Variogram sills were standardized to 1. Nuggets were generally moderate to low, ranging from 0.22 to 0.56, and the range of the variogram ranged from 50m to 115m. Geometric Anisotropy was adopted and ellipsoid ratios applied to reflect directional variograms.
- Estimation parameters: min samples 12 and max 20 first pass, minor veins min samples 5 and max 12 or 16. Required number of samples was relaxed for subsequent passes.
- Search distances were set a 60 m with anisotropy ratios of 1.67 and 2.5. search distances were doubled on 2nd pass and trebled on the 3rd pass. Informing composites were limited to 5 per drill hole for pass one and two, this restriction was removed for pass 3. 44% of blocks are estimated in pass 1, 51% in pass two and 5% in pass three.
- Silver is considered a by-product and has been estimated using the similar parameters as the gold estimate.
- No other variables were considered in this resource estimate.
- Block size was 25 m x 10 m x 10 m (XYZ) which considers vein orientation and drill pattern. (approximately ½ the drill spacing)
- Sub-blocking of 1.25 m x 3.125 m x 1.25 m was permitted allowing sufficient detail in the model to reflect the higher grade vein sets.
- Wireframes were constructed based on surface mapping, and drill hole intercepts greater than 0.3g/t Au and high grade greater than 2.0 g/t Au. Wireframes were used to constrain the individual veins estimates. Wireframes were clipped by a manual conceptual pit outline based on a gold price of Au\$2,800.
- High grade outliers data were capped. Identified erratic high grades were sidelined during the capping analysis, these samples were capped and used in the estimate. Au was capped by domain and capped grades ranged from 3.06 to 85.42 g/t, Ag ranged from 8.0 to 59.7 g/t.
- Global mean grades for estimated blocks and drill hole samples compared well.
- Ordinary krige estimates were compared to nearest neighbour and inverse distance estimates, to assess the impact of data clustering and semi-variograms.
- Swath plots along strike were constructed and showed a good correlation between sample data and estimated block grades, especially in well informed areas.

Cut-Off Grade

The resources are reported at a 0.3 g/t Au cut-off grade, reflecting reasonably foreseeable economic production costs and gold prices for underground mining and processing. The resource has been constrained in areas where a conceptual pit indicated that mining factors may not result in eventual economic extraction. This work was not definitive and further, more detailed analyses may result in these areas being included in future resource estimates.

Mining and Metallurgical and other factors.

The mining method to be employed is open pit mining. Open pit mining is assumed (not demonstrated) based on the experience of the CP and GBM staff, and because it has been used in previous mining at the Yandan site. It is considered that the mineralization has sufficient continuity, width and contains sufficient gold to have reasonable prospects of eventual economic extraction.

Preliminary un-optimised metallurgical testwork has been conducted by several companies (Straits Gold – 2005, Drummond Gold - 2010) and has demonstrated that recoveries of 70 to 90% could be expected from sulphide ores treated by a conventional grinding / cyanide leaching process. Some optimisation by including flotation and fine grinding of certain styles of mineralisation is likely to improve gold recoveries to the higher range.

Oxide material has previously been successfully treated by grinding / cyanidation and heap leaching with recoveries of 93% and 62% respectively.

The Yandan Minesite already contains a significant treatment plant area and tailings footprint, so only limited additional environmental bond for the processing element would be required. Capacity exists to build up on top of the existing tailings dams (no additional disturbance). Ready access to power and water is available at the project.

GBM is focused on defining a large low grade open pit resource that can be mined in conjunction with higher grade ore from GBM's Mt Coolon Project. Conceptually GBM see a plant funded by higher grade ores, with a lower grade pit brought into production after the project has sufficient cash flow to ease the funding requirements of a large pre-strip.

Optionality of the Yandan resource, should gold prices go lower, to yield a small high grade UG project could be targeted.

Tenement Status

The Yandan resource is located on Granted mining leases ML 1095 and ML 1096. Mining leases (ML) for Yandan project expire 30 June 2021. GBM on completion will acquire 100% of Straits Gold Pty Ltd which is the registered holder of ML 1095 and 1096. Renewal applications are in process for these ML's.

Previous Mining and Development

The Drummond basin has been explored for gold by a number of companies since the beginning of the 1980's. Companies previously holding the Yandan tenements include the following:

- WMC ~1985-1992 (tenement consolidated as EPM 8257 in 1991).
- Ross Mining NL (RSM) (1993-2000).
- Ashburton Minerals and Delta Gold (2000).
- Normandy Mining/Newmont Australia. Normandy Mining (which became Newmont Australia) (2000-2002).

The discovery of Yandan resulted from a regional exploration program undertaken by WMC between 1985 and 1992, which resulted in the discovery of all the main prospects within the tenement. This was followed by regional reconnaissance and additional work on prospects conducted by RSM. No significant additional discoveries were made from RSMs exploration efforts.

RSM recovered 365,000oz Au from the Yandan Gold Mine through a combination of CIP and dump leach operations from 1992 to 1998. The last gold bar was poured from the CIP operations in April 1999 and the plant was subsequently relocated in June of that year. Delta Gold completed a take-over of RSM in 2000.

On 26 February 2004, Straits Exploration (Australia) Pty Ltd, a wholly owned subsidiary of Straits Resources Ltd, entered into an Option and Joint Venture Agreement with Wirralie Mines Pty Ltd, a wholly owned subsidiary of Ashburton Minerals Ltd with respect to EPM8257 and ML1095.

Ashburton Minerals Ltd subsequently decided to sell Wirralie Mines Pty Ltd in October 2005, and Straits exercised its pre-emptive right as part of the Joint Venture to purchase the Yandan tenements (EPM8257,

ML1095 and ML1096). The transfer of the exploration licence to Straits Exploration (Australia) Pty Ltd was effective from 3 May 2006.

As part of a corporate reconstruction within the Straits group, it was decided to transfer the tenement from Straits Exploration (Australia) Pty Ltd to Straits Gold Pty Ltd. The transfer of the exploration licence to Straits Gold Pty Ltd was effective from 2 August 2006 for ML1095 and ML1096, and 26 September for EPM8257.

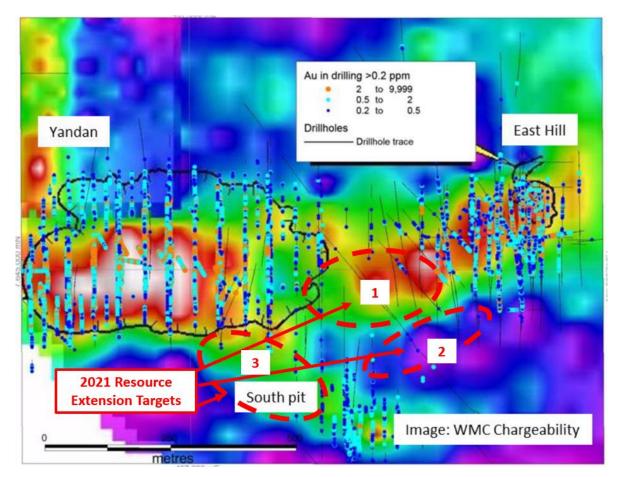
In May 2009, Drummond Gold entered a Farm In Agreement with Straits Resources for the Yandan Project tenements. The agreement specified \$1M expenditure within the initial 12 months after which Drummond could withdraw from the agreement.

Drummond undertook exploration activities at Yandan during 2010, focused on drilling at East Hill to test for extensions. Hellman & Schofield completed a mineral resource upgrade as a result, defining a JORC compliant (2004) resource of 8.56 Mt at 1.5 g/t Au. In July 2011, Drummond formally withdrew from the Heads of Agreement for the farm in and joint venture with Straits for the Yandan project in July 2011.

Site Infrastructure

Significant infrastructure exists at the site such as power, water dams and access to the Suttor River, tailings and previous plant footprint and GBM considers this site to be key for its centralised processing hub strategy (as Ross Mining also did from 1994 to 1999). See Figure 7.

Exploration Focus - Yandan Targets

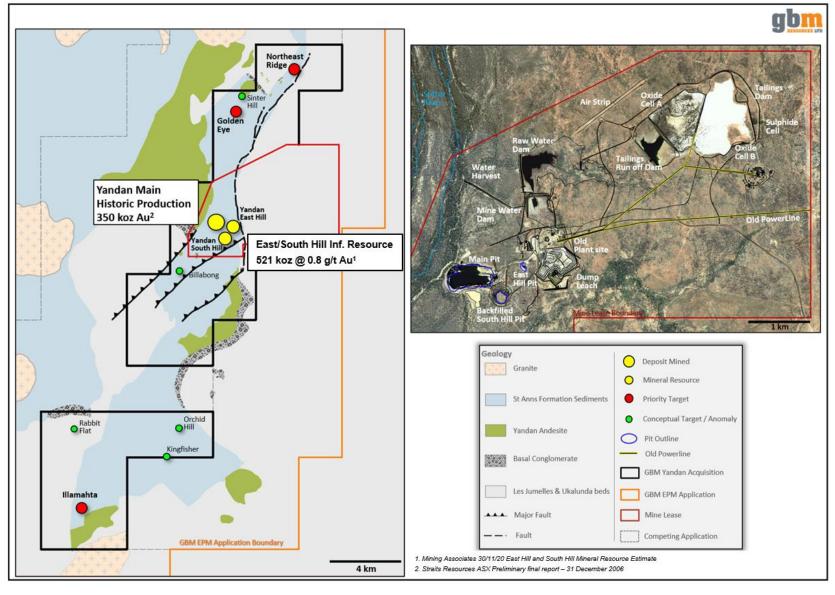

East Hill / Main Pit / South Pit

The exploration areas below are targeted for 2 main reasons. Extension of high grade targets at depth and infill drilling of areas that could fall into a larger open pit on the broader mineralised envelope outlined in the earlier tables at 0.3 and 0.4 g/t Au cut-off grades on page 6.

- 1. The "Link Zone" between Yandan East veins & the main pit. Drilling does not appear to have tested this area for continuation of the Yandan East Vein Zone. Preliminary evaluation of this proposed target in Discover 3D suggests a strike length of 250 m remains untested along trend between the Yandan East veining and the Main pit (Figure 6). This trend coincides with the permissive EW trend known to be dilatant at the time of mineralization. The most westerly Straits hole (YAN25) along the Yandan East trend did not intersect significant mineralization. However, given the poddy nature of the Yandan East mineralization, this hole may have intersected an intra-shoot gap.
- 2. New understanding of the mineralisation control resulting from the East Pit relogging campaign has identified a 250 m section extending from East pit veining towards South Pit, beneath the coherent andesite cap, as a high priority conceptual target. Given that the strike length of the current East pit resource is in the order of 250 m, there is conceptual potential to conceal a similar size resource in this target area.
- 3. South Pit to Main Pit zone shows some higher grade intervals in this trend, corresponding to the chargeability corridor.

Figure 6: Plan of Yandan Main and East Hill Drilling. Drill holes coloured by gold assay. Plan also shows pit outlines and WMC IP chargeability

Illamahta / Northeast Ridge


The Illamahta prospect is part of the Illamahta to Orchid Hill mineralized trend in the south of the Yandan Trough. WMC and Ross Mining defined a low grade mixed oxide and refractory resource of 907,997 tonnes @ 0.96 g/t for 28,157 ounces (0.5 g/t cut-off) (Johnston, 1993), based on RC drilling and two diamond holes at the Illamahta South hill. With the recognition of new epithermal fissure vein mineralization at Gemini North & South, the Illamahta system now has the largest alteration / geochemical footprint of all the epithermal centres identified to date in the Tenement. The Illamahta epithermal system remains significantly under explored for Au / Ag mineralization.

Rock chip sampling at Northeast Ridge identified an area of quartz veining along a broad NNE trending structural corridor (initial sample 3.22 g/t, resample 4.85 g/t). The samples were taken from quartz veining in basement metasediments that does not show epithermal textures. The veining is located close to the basement contact with Drummond sediments, which dip to the east and may be in fault contact with the metasediments. Mapping has identified unaltered dacite plugs nearby with several additional apparent intrusive bodies on the magnetics, with possible magnetic depletion in the vicinity of the above mentioned veining.

See Figure 7 for locations of these target areas.

Figure 7: Yandan Gold Project and Mine Infrastructure

APPENDIX 1 – DRILL HOLE INTERSECTIONS GREATER THAN 10 GRAM.METRES.

Yandan Project Significant Gold Intersections

Calculated bulk composite length weighted intersections with a cut-off grade above 1 g/t Au including up to 4 m internal dilution at an average grade of above 0.1 g/t Au. All interval lengths represent down hole lengths. Intersection above 10 gram metres are presented, an additional 891 intervals with less than 10 gram meter interactions were identified and are not presented.

Hole ID	From Depth	To Depth	Au g/t	Ag g/t	S %	Interval Length (m)	Intersection	Gram metre intersection
YAN010	335.5	338	247.9	181.6	0.63	2.5	2.5 m @ 247.9 g/t Au from 335.5 m	619.75
YAN022	354	371	21.44	15.31	1.78	17	17 m @ 21.44 g/t Au from 354 m	364.48
YNDC189	9	49	5.67			40	40 m @ 5.67 g/t Au from 9 m	226.8
YNDC186	0	50	4.47			50	50 m @ 4.47 g/t Au from 0 m	223.5
YAN022	336	353	12.81	8.63	1.54	17	17 m @ 12.81 g/t Au from 336 m	217.77
YNDD153	12	63	3.56			51	51 m @ 3.56 g/t Au from 12 m	181.56
YNDC2	2	59	3.12			57	57 m @ 3.12 g/t Au from 2 m	177.84
YNDC29	0	45	3.44			45	45 m @ 3.44 g/t Au from 0 m	154.8
YNDC35	0	47	3.29			47	47 m @ 3.29 g/t Au from 0 m	154.63
YNDC63	0	32	4.81			32	32 m @ 4.81 g/t Au from 0 m	153.92
YNDC7	0	49	3.13			49	49 m @ 3.13 g/t Au from 0 m	153.37
YNDC93	2	37	4.27			35	35 m @ 4.27 g/t Au from 2 m	149.45
YNDC137	18	57	3.47			39	39 m @ 3.47 g/t Au from 18 m	135.33
YNDC178	0	21	6.27			21	21 m @ 6.27 g/t Au from 0 m	131.67
YNDD177	0	41	2.99			41	41 m @ 2.99 g/t Au from 0 m	122.59
YNDC192	0	38	3.05			38	38 m @ 3.05 g/t Au from 0 m	115.9
YNDC76	41	72	3.6			31	31 m @ 3.6 g/t Au from 41 m	111.6
EHRCD003	290.1	297	16.08			6.9	6.9 m @ 16.08 g/t Au from 290.1 m	110.95
YNDC39	0	40	2.76			40	40 m @ 2.76 g/t Au from 0 m	110.4
YNDC179	3	30	3.91			27	27 m @ 3.91 g/t Au from 3 m	105.57
YNDD20	0	37	2.75	24.67	2.00	37	37 m @ 2.75 g/t Au from 0 m	101.75
YAN011	310.7	313	42.53	24.67	2.92	2.3	2.3 m @ 42.53 g/t Au from 310.7 m	97.82
EHRCD007	309	317	12.16			8	8 m @ 12.16 g/t Au from 309 m	97.28
YNDC76	0	33	2.7		_	33	33 m @ 2.7 g/t Au from 0 m	89.1
YNDC97	0	22	3.72			22	22 m @ 3.72 g/t Au from 0 m	81.84
YNDC3	3	37	2.39		_	34	34 m @ 2.39 g/t Au from 3 m	81.26
YNDC53	1	41	1.98		-	40	40 m @ 1.98 g/t Au from 1 m	79.2
YNDC28	0	36	2.18		_	36	36 m @ 2.18 g/t Au from 0 m	78.48
YNDD148 EHRCD003	0	14 322.1	5.58		-	14	14 m @ 5.58 g/t Au from 0 m	78.12
	311	-	7.02			11.1	11.1 m @ 7.02 g/t Au from 311 m	
YNDC223 YAN011	35	61	2.88	10.12	2.01	26	26 m @ 2.88 g/t Au from 35 m 5.5 m @ 13.55 g/t Au from 318 m	74.88
	318 24	323.5	13.55	10.13	2.01	5.5	35 m @ 2.12 g/t Au from 24 m	74.53
YNDC73		59	2.12	4 20	2 22	35		74.2
YAN005 YNDC78	365 36	373.4	8.57	4.28	2.33	8.4	8.4 m @ 8.57 g/t Au from 365 m	71.99 70.5
YNDC78 YNDC32	5	66 27	2.35 3.16		_	<u> </u>	30 m @ 2.35 g/t Au from 36 m 22 m @ 3.16 g/t Au from 5 m	
YNDC32 YNDD149	0	16	4.28			16	16 m @ 4.28 g/t Au from 0 m	69.52 68.48
YNDD149 YNDD150	17	41	4.28		_	24	24 m @ 2.8 g/t Au from 17 m	67.2
YNDC161	40	69	2.8			24	29 m @ 2.22 g/t Au from 40 m	64.38
YAN005	300.5	306	11.6	11.78	2.59	5.5	5.5 m @ 11.6 g/t Au from 300.5 m	63.8
YANUUS YNDD149	300.5	306	3.18	11.78	2.39	20	20 m @ 3.18 g/t Au from 300.5 m	63.6
YNDC162	18	42	2.25			20	28 m @ 2.25 g/t Au from 14 m	63
YNDC162 YNDC162	43	66	2.23			23	23 m @ 2.25 g/t Au from 14 m 23 m @ 2.72 g/t Au from 43 m	62.56
YNDC162 YNDC315	28	63	1.77			35	35 m @ 1.77 g/t Au from 28 m	61.95
YNDC313	20	49	2.09			29	29 m @ 2.09 g/t Au from 20 m	60.61
YNDC222	39	63	2.48			23	24 m @ 2.48 g/t Au from 39 m	59.52
YNDD19	33	56	3.08			19	19 m @ 3.08 g/t Au from 37 m	58.52
YNDC341	9	38	1.96			29	29 m @ 1.96 g/t Au from 9 m	56.84
YNDC182	18	40	2.53			22	22 m @ 2.53 g/t Au from 18 m	55.66
YNDC182	0	21	2.55			22	21 m @ 2.6 g/t Au from 0 m	54.6
YAN011	330.9	341.2	5.28	4.3	1.89	10.3	10.3 m @ 5.28 g/t Au from 330.9 m	54.38
YNDC99	7	31	2.21		2.00	24	24 m @ 2.21 g/t Au from 7 m	53.04
YNDC262	25	51	2.21			24	26 m @ 2 g/t Au from 25 m	53.04
YNDC8	0	15	3.4			15	15 m @ 3.4 g/t Au from 0 m	51
YNDC65	0	13	3.88			13	13 m @ 3.88 g/t Au from 0 m	50.44
YNDC56	1	24	2.19			23	23 m @ 2.19 g/t Au from 1 m	50.37
HNDC50	1	24	2.13			23	23 III @ 2.13 g/t Au II 0III 1 III	50.57

Hole ID	From Depth	To Depth	Au g/t	Ag g/t	S %	Interval Length (m)	Intersection	Gram metre intersection
YNDC165	0	17	2.95			17	17 m @ 2.95 g/t Au from 0 m	50.15
YAN022	325.35	335	5.13	3.71	2.26	9.65	9.6 m @ 5.13 g/t Au from 325.35 m	49.5
YAN016	323.43	335	4.18	3.65	3.32	11.57	11.6 m @ 4.18 g/t Au from 323.43 m	48.36
YAN011	274.6	275.3	67.3	44.4	3.37	0.7	0.7 m @ 67.3 g/t Au from 274.6 m	47.11
YNDC79	34	51	2.76			17	17 m @ 2.76 g/t Au from 34 m	46.92
YNDD17 YNDC134	49 11	70 35	2.22 1.93			21	21 m @ 2.22 g/t Au from 49 m	46.62 46.32
YNDC134 YNDC131	43	59	2.79			16	24 m @ 1.93 g/t Au from 11 m 16 m @ 2.79 g/t Au from 43 m	46.32
YNDD184	15	41	1.69			26	26 m @ 1.69 g/t Au from 15 m	44.04
YAN032	202	207	8.75	42.68	1.98	5	5 m @ 8.75 g/t Au from 202 m	43.75
YNDD17	0	26	1.67			26	26 m @ 1.67 g/t Au from 0 m	43.42
YNDD155	66	76	4.31			10	10 m @ 4.31 g/t Au from 66 m	43.1
YNDD177	41.8	58	2.64			16.2	16.2 m @ 2.64 g/t Au from 41.8 m	42.77
YAN005	317.6	318	104	85.8	1.24	0.4	0.4 m @ 104 g/t Au from 317.6 m	41.6
YAN005	308.7	314	7.84	6.53	1.61	5.3	5.3 m @ 7.84 g/t Au from 308.7 m	41.55
YAN022	287.4	301.1	3.02	6.75	2.72	13.7	13.7 m @ 3.02 g/t Au from 287.4 m	41.37
YNDC4	37	59	1.88			22	22 m @ 1.88 g/t Au from 37 m	41.36
YNDD152 YAN001	0	14	2.92	14.10	2.24	14	14 m @ 2.92 g/t Au from 0 m	40.88
YANUU1 YNDC332	253 39	259.85 63	5.94 1.68	14.19	2.24	6.85 24	6.9 m @ 5.94 g/t Au from 253 m 24 m @ 1.68 g/t Au from 39 m	40.69 40.32
YNDC332 YNDC96		12	7.93			5	5 m @ 7.93 g/t Au from 7 m	39.65
YNDD175	30	44	2.71			14	14 m @ 2.71 g/t Au from 30 m	37.94
YNDC182	0	17	2.23			17	17 m @ 2.23 g/t Au from 0 m	37.91
YNDC160	56	77	1.8			21	21 m @ 1.8 g/t Au from 56 m	37.8
YNDC30	16	41	1.5			25	25 m @ 1.5 g/t Au from 16 m	37.5
YNDC185	22	46	1.54			24	24 m @ 1.54 g/t Au from 22 m	36.96
YNDD245	26	45	1.91			19	19 m @ 1.91 g/t Au from 26 m	36.29
YNDD302	125	140.1	2.4	0.19	0.23	15.1	15.1 m @ 2.4 g/t Au from 125 m	36.24
YNDC326	48	72	1.5			24	24 m @ 1.5 g/t Au from 48 m	36
YNDC98	14	31	2.1			17	17 m @ 2.1 g/t Au from 14 m	35.7
YNDC216 YNDC342	1 34	12 55	3.24 1.69			11 21	11 m @ 3.24 g/t Au from 1 m 21 m @ 1.69 g/t Au from 34 m	35.64 35.49
YNDC93	34	60	1.68			21	21 m @ 1.68 g/t Au from 39 m	35.28
YNDC55	34	56	1.57			22	22 m @ 1.57 g/t Au from 34 m	34.54
YAN028	285.8	300.2	2.35	5.7	2.81	14.4	14.4 m @ 2.35 g/t Au from 285.8 m	33.84
YNDC5	36	59	1.46			23	23 m @ 1.46 g/t Au from 36 m	33.58
YNDC27	36	53	1.97			17	17 m @ 1.97 g/t Au from 36 m	33.49
YAN011	325.9	330	7.84	5.79	1.69	4.1	4.1 m @ 7.84 g/t Au from 325.9 m	32.14
YNDC6	0	16	2			16	16 m @ 2 g/t Au from 0 m	32
YNDC330	48	68	1.57			20	20 m @ 1.57 g/t Au from 48 m	31.4
YNDD184	43	53	3.13	204.4	2 24	10	10 m @ 3.13 g/t Au from 43 m	31.3
EHRCD001 YNDD308	215.4 27	217.4 47	15.54 1.52	394.4	3.31	2	2 m @ 15.54 g/t Au from 215.4 m 20 m @ 1.52 g/t Au from 27 m	31.08 30.4
YNDD17	30	47	1.78			17	17 m @ 1.78 g/t Au from 30 m	30.26
YAN016	344	352	3.75	3.31	3.21	8	8 m @ 3.75 g/t Au from 344 m	30
YNDC95	3	21	1.66			18	18 m @ 1.66 g/t Au from 3 m	29.88
YNDC251	37	53	1.84			16	16 m @ 1.84 g/t Au from 37 m	29.44
YAN022	269.1	285	1.84	6.5	2.19	15.9	15.9 m @ 1.84 g/t Au from 269.1 m	29.26
YNDC131	0	16	1.81			16	16 m @ 1.81 g/t Au from 0 m	28.96
YNDD310	1	17	1.79			16	16 m @ 1.79 g/t Au from 1 m	28.64
YNDC136	63	76	2.18			13	13 m @ 2.18 g/t Au from 63 m	28.34
YNDC79	52	67	1.88			15	15 m @ 1.88 g/t Au from 52 m	28.2
YNDD188	62	74	2.34	2 74	1 27	12	12 m @ 2.34 g/t Au from 62 m	28.08
EHRCD006 YNDD241	307 56	320.2 74	2.12 1.54	3.71	1.37	13.2 18	13.2 m @ 2.12 g/t Au from 307 m 18 m @ 1.54 g/t Au from 56 m	27.98 27.72
YNDD241 YNDD150	0	9	3.06			9	9 m @ 3.06 g/t Au from 0 m	27.72
YNDD302	215.3	216.3	27.15	0.36		1	1 m @ 27.15 g/t Au from 215.3 m	27.34
YAN005	322.8	330	3.73	2.92	2.03	7.2	7.2 m @ 3.73 g/t Au from 322.8 m	26.86
YNDC196	50	65	1.76			15	15 m @ 1.76 g/t Au from 50 m	26.4
YNDC317	31	50	1.38			19	19 m @ 1.38 g/t Au from 31 m	26.22
YNDC341	39	55	1.63			16	16 m @ 1.63 g/t Au from 39 m	26.08
YNDC159	11	25	1.86			14	14 m @ 1.86 g/t Au from 11 m	26.04
YNDC159	26	44	1.44			18	18 m @ 1.44 g/t Au from 26 m	25.92
YNDC62	9	19	2.57			10	10 m @ 2.57 g/t Au from 9 m	25.7
YNDC190	21	36	1.7			15	15 m @ 1.7 g/t Au from 21 m	25.5
YNDD154	26	39	1.95			13	13 m @ 1.95 g/t Au from 26 m	25.35

Hole ID	From Depth	To Depth	Au g/t	Ag g/t	S %	Interval Length (m)	Intersection	Gram metre intersection
YNDC34	15	32	1.49			17	17 m @ 1.49 g/t Au from 15 m	25.33
YNDD226	67	68	25.2			1	1 m @ 25.2 g/t Au from 67 m	25.2
YAN036	311.7	312.4	35.9	22.4	0.76	0.7	0.7 m @ 35.9 g/t Au from 311.7 m	25.13
YNDD20	148	149	25.1			1	1 m @ 25.1 g/t Au from 148 m	25.1
YAN016	355	356	25.1	10.7	3.26	1	1 m @ 25.1 g/t Au from 355 m	25.1
YNDC78	68	77	2.78			9	9 m @ 2.78 g/t Au from 68 m	25.02
YNDC312	6	22	1.51			16	16 m @ 1.51 g/t Au from 6 m	24.16
YAN016	136	146	2.41	13.03	1.28	10	10 m @ 2.41 g/t Au from 136 m	24.1
YNDC160	31	40	2.66			9	9 m @ 2.66 g/t Au from 31 m	23.94
YNDD244	41	52	2.12			11	11 m @ 2.12 g/t Au from 41 m	23.32
YAN017	291.2	297.5	3.63	5	2.97	6.3	6.3 m @ 3.63 g/t Au from 291.2 m	22.87
YNDC40	0	13	1.75			13	13 m @ 1.75 g/t Au from 0 m	22.75
YNDC4	1	16	1.51			15	15 m @ 1.51 g/t Au from 1 m	22.65
YNDD153	0	10	2.25			10	10 m @ 2.25 g/t Au from 0 m	22.5
YNDC54	41	56	1.5			15	15 m @ 1.5 g/t Au from 41 m	22.5
YNDC98	0	7	3.2			7	7 m @ 3.2 g/t Au from 0 m	22.4
YNDD295	20	32	1.85			12	12 m @ 1.85 g/t Au from 20 m	22.2
YNDD245	72	83	1.98			11	11 m @ 1.98 g/t Au from 72 m	21.78
YNDC354	55	72	1.28			17	17 m @ 1.28 g/t Au from 55 m	21.76
YNDD304	133.3	137.3	5.34	2.25		4	4 m @ 5.34 g/t Au from 133.3 m	21.36
EHRCD003	223	228.5	3.88			5.5	5.5 m @ 3.88 g/t Au from 223 m	21.34
YNDC135	47	57	2.13			10	10 m @ 2.13 g/t Au from 47 m	21.3
YNDC130	21	35	1.52			14	14 m @ 1.52 g/t Au from 21 m	21.28
YNDC340 YNDD152	2	19 36	1.25			17 11	17 m @ 1.25 g/t Au from 2 m 11 m @ 1.93 g/t Au from 25 m	21.25 21.23
			1.93				C 0,	
YNDC381	17 27	33 40	1.32			16 13	16 m @ 1.32 g/t Au from 17 m	21.12
YNDC331	357	364	1.62 2.96	2.29	1.63	7	13 m @ 1.62 g/t Au from 27 m	21.06 20.72
YAN005 YAN017	299.3	299.7		2.29	2.61	0.4	7 m @ 2.96 g/t Au from 357 m 0.4 m @ 50.9 g/t Au from 299.3 m	
YNDD297	120	128.4	50.9 2.42	0.01	2.61	8.4		20.36 20.33
YAN018	360.63	368.66	2.42	3.01	1.46	8.03	8.4 m @ 2.42 g/t Au from 120 m 8 m @ 2.53 g/t Au from 360.63 m	20.33
YNDD151	13	25	1.69	3.01	1.40	12	12 m @ 1.69 g/t Au from 13 m	20.32
YNDC27	58	73	1.35			12	15 m @ 1.35 g/t Au from 58 m	20.28
YAN023	273.4	282.8	2.15	3.41	2.79	9.4	9.4 m @ 2.15 g/t Au from 273.4 m	20.23
YNDC195	41	51	1.98	5.41	2.75	10	10 m @ 1.98 g/t Au from 41 m	19.8
YNDC251	12	27	1.32			15	15 m @ 1.32 g/t Au from 12 m	19.8
YNDC348	60	72	1.64			13	12 m @ 1.64 g/t Au from 60 m	19.68
YNDC38	6	18	1.63			12	12 m @ 1.63 g/t Au from 6 m	19.56
YNDC4	20	35	1.00			15	15 m @ 1.29 g/t Au from 20 m	19.35
YNDC161	20	37	1.13			17	17 m @ 1.13 g/t Au from 20 m	19.21
YNDD155	18	31	1.47			13	13 m @ 1.47 g/t Au from 18 m	19.11
YNDC173	30	45	1.27			15	15 m @ 1.27 g/t Au from 30 m	19.05
YAN016	312	319	2.69	2.88	1.68	7	7 m @ 2.69 g/t Au from 312 m	18.83
YNDC173	9	23	1.32			14	14 m @ 1.32 g/t Au from 9 m	18.48
EHRCD006	323	331	2.31	1.59	1.26	8	8 m @ 2.31 g/t Au from 323 m	18.48
EHRCD009	285	296	1.67	2.25	1.23	11	11 m @ 1.67 g/t Au from 285 m	18.37
YNDC171	10	23	1.41			13	13 m @ 1.41 g/t Au from 10 m	18.33
YNDC176	0	10	1.81			10	10 m @ 1.81 g/t Au from 0 m	18.1
YNDC199	35	37	8.9			2	2 m @ 8.9 g/t Au from 35 m	17.8
YNDD261	49.9	61	1.6			11.1	11.1 m @ 1.6 g/t Au from 49.9 m	17.76
YNDC94	23	35	1.48			12	12 m @ 1.48 g/t Au from 23 m	17.76
YNDD245	48	50.7	6.54			2.7	2.7 m @ 6.54 g/t Au from 48 m	17.66
YNDC246	22	35	1.35			13	13 m @ 1.35 g/t Au from 22 m	17.55
YNDC381	1	13	1.46			12	12 m @ 1.46 g/t Au from 1 m	17.52
YNDC39	44	54	1.75			10	10 m @ 1.75 g/t Au from 44 m	17.5
YAN017	276.6	278	12.48	9.57	2.79	1.4	1.4 m @ 12.48 g/t Au from 276.6 m	17.47
YNDD297	144	144.6	29	0.35		0.6	0.6 m @ 29 g/t Au from 144 m	17.4
YNDC77	18	28	1.73			10	10 m @ 1.73 g/t Au from 18 m	17.3
YNDC27	20	31	1.57			11	11 m @ 1.57 g/t Au from 20 m	17.27
YNDC68	59	62	5.72			3	3 m @ 5.72 g/t Au from 59 m	17.16
YNDC34	33	45	1.43			12	12 m @ 1.43 g/t Au from 33 m	17.16
YNDC183	22	36	1.22			14	14 m @ 1.22 g/t Au from 22 m	17.08
YAN036	245.2	256.9	1.46	1.85	1.77	11.7	11.7 m @ 1.46 g/t Au from 245.2 m	17.08
YNDC262	11	23	1.42			12	12 m @ 1.42 g/t Au from 11 m	17.04
YNDC359	9	18	1.89			9	9 m @ 1.89 g/t Au from 9 m	17.01
YAN011	232.9	237	4.13	11.96	1.93	4.1	4.1 m @ 4.13 g/t Au from 232.9 m	16.93

Hole ID	From Depth	To Depth	Au g/t	Ag g/t	S %	Interval Length (m)	Intersection	Gram metre intersection
YNDC133	20	32	1.41			12	12 m @ 1.41 g/t Au from 20 m	16.92
YNDC78	21	34	1.3			13	13 m @ 1.3 g/t Au from 21 m	16.9
YNDC36	2	9	2.41			7	7 m @ 2.41 g/t Au from 2 m	16.87
EHRCD006	341	347	2.79	1.41	1.52	6	6 m @ 2.79 g/t Au from 341 m	16.74
YNDC32	57	64	2.39			7	7 m @ 2.39 g/t Au from 57 m	16.73
YNDC137	3	16	1.28			13	13 m @ 1.28 g/t Au from 3 m	16.64
EHRCD009	266	276	1.66	3.61	1.53	10	10 m @ 1.66 g/t Au from 266 m	16.6
YNDC133	39	46	2.37			7	7 m @ 2.37 g/t Au from 39 m	16.59
YNDD226	49	58	1.84			9	9 m @ 1.84 g/t Au from 49 m	16.56
YNDC54	13	19	2.76	2.20	0.22	6 6.1	6 m @ 2.76 g/t Au from 13 m	16.56
YNDD297 YNDC348	144.9 45	151 56	2.71 1.5	3.39	0.33	0.1 11	6.1 m @ 2.71 g/t Au from 144.9 m 11 m @ 1.5 g/t Au from 45 m	16.53 16.5
YNDC348	43	12	1.37			11	12 m @ 1.37 g/t Au from 0 m	16.44
YNDC75	0	11	1.49			11	11 m @ 1.49 g/t Au from 0 m	16.39
YAN001	295.2	296.15	17.15	90.3	0.54	0.95	0.9 m @ 17.15 g/t Au from 295.2 m	16.29
YNDC173	49	60	1.48	5010	0.0 .	11	11 m @ 1.48 g/t Au from 49 m	16.28
YNDC32	46	53	2.3			7	7 m @ 2.3 g/t Au from 46 m	16.1
YNDC77	33	47	1.15			14	14 m @ 1.15 g/t Au from 33 m	16.1
YNDD255	37	47	1.6			10	10 m @ 1.6 g/t Au from 37 m	16
YNDC91	3	14	1.44			11	11 m @ 1.44 g/t Au from 3 m	15.84
YNDD245	85	90.5	2.86			5.5	5.5 m @ 2.86 g/t Au from 85 m	15.73
YNDC219	14	22	1.96			8	8 m @ 1.96 g/t Au from 14 m	15.68
YAN014	283.6	294.6	1.42	3.06	1.69	11	11 m @ 1.42 g/t Au from 283.6 m	15.62
YNDD302	227.7	232	3.62	0.01		4.3	4.3 m @ 3.62 g/t Au from 227.7 m	15.57
YNDC217	4	7	5.17			3	3 m @ 5.17 g/t Au from 4 m	15.51
YNDD154	62	73	1.41			11	11 m @ 1.41 g/t Au from 62 m	15.51
YNDC257	43	56	1.19			13	13 m @ 1.19 g/t Au from 43 m	15.47
YNDC16	25	30	3.06			5	5 m @ 3.06 g/t Au from 25 m	15.3
YNDC222	75	80	3.05			5	5 m @ 3.05 g/t Au from 75 m	15.25
YNDC55	10	23	1.17			13	13 m @ 1.17 g/t Au from 10 m	15.21
YNDC341 YAN031	57 267	68 279	1.38 1.26	2.72	5.89	11 12	11 m @ 1.38 g/t Au from 57 m	15.18 15.12
YNDC32	287	41	1.26	2.72	5.89	12	12 m @ 1.26 g/t Au from 267 m 13 m @ 1.16 g/t Au from 28 m	15.12
YAN005	28	242	1.10	1.91	2.01	11	11 m @ 1.37 g/t Au from 231 m	15.08
YNDC73	62	72	1.49	1.51	2.01	10	10 m @ 1.49 g/t Au from 62 m	14.9
YNDC174	30	42	1.24			12	12 m @ 1.24 g/t Au from 30 m	14.88
YAN023	300	307.9	1.88	2.39	3.69	7.9	7.9 m @ 1.88 g/t Au from 300 m	14.85
YNDC183	0	12	1.23			12	12 m @ 1.23 g/t Au from 0 m	14.76
YNDD184	0	12	1.23			12	12 m @ 1.23 g/t Au from 0 m	14.76
YNDC220	12	22	1.47			10	10 m @ 1.47 g/t Au from 12 m	14.7
YNDC54	57	63	2.42			6	6 m @ 2.42 g/t Au from 57 m	14.52
EHRCD003	324	332	1.8			8	8 m @ 1.8 g/t Au from 324 m	14.4
YNDC330	33	43	1.44			10	10 m @ 1.44 g/t Au from 33 m	14.4
YAN031	307	317	1.44	1.43	5.78	10	10 m @ 1.44 g/t Au from 307 m	14.4
YNDD297	98	105.15	2.01			7.15	7.2 m @ 2.01 g/t Au from 98 m	14.37
YAN023	262	273	1.3	2.43	3.79	11	11 m @ 1.3 g/t Au from 262 m	14.3
YNDC55	0	8	1.78			8	8 m @ 1.78 g/t Au from 0 m	14.24
YNDC95	38	47	1.58			9	9 m @ 1.58 g/t Au from 38 m	14.22
YNDC240	1	11	1.42	2.07	2.64	10	10 m @ 1.42 g/t Au from 1 m	14.2
YAN005	285 31	290	2.84	2.87	2.61	5	5 m @ 2.84 g/t Au from 285 m	14.2
YNDC131 YNDC135	67	42 75	1.28 1.75			8	11 m @ 1.28 g/t Au from 31 m 8 m @ 1.75 g/t Au from 67 m	14.08 14
YAN001	336.6	337.2	23.3	19.8	1.8	0.6	0.6 m @ 23.3 g/t Au from 336.6 m	13.98
YNDD154	9	20	1.27	13.0	1.0	11	11 m @ 1.27 g/t Au from 9 m	13.98
YNDC375	36	49	1.07			13	13 m @ 1.07 g/t Au from 36 m	13.91
YNDC313	5	15	1.39			10	10 m @ 1.39 g/t Au from 5 m	13.9
YNDD175	57	66	1.54			9	9 m @ 1.54 g/t Au from 57 m	13.86
YNDD261	11	21	1.38			10	10 m @ 1.38 g/t Au from 11 m	13.8
YNDC433	1	13	1.15			12	12 m @ 1.15 g/t Au from 1 m	13.8
YNDC257	19	26	1.97			7	7 m @ 1.97 g/t Au from 19 m	13.79
EHRCD006	276.7	278	10.6	10.5	1.86	1.3	1.3 m @ 10.6 g/t Au from 276.7 m	13.78
YNDC316B	15	26	1.25			11	11 m @ 1.25 g/t Au from 15 m	13.75
YNDC199	83	88	2.74			5	5 m @ 2.74 g/t Au from 83 m	13.7
YNDC219	30	40	1.36			10	10 m @ 1.36 g/t Au from 30 m	13.6
YNDD309	7	16	1.5			9	9 m @ 1.5 g/t Au from 7 m	13.5
YAN023	327.55	337.7	1.33	2.06	3.15	10.15	10.2 m @ 1.33 g/t Au from 327.55 m	13.5

Hole ID	From Depth	To Depth	Au g/t	Ag g/t	S %	Interval Length (m)	Intersection	Gram metre intersection
YNDC94	10	18	1.67			8	8 m @ 1.67 g/t Au from 10 m	13.36
YNDC6	21	31	1.33			10	10 m @ 1.33 g/t Au from 21 m	13.3
YNDD370	95	105	1.33			10	10 m @ 1.33 g/t Au from 95 m	13.3
YAN015	371	379.3	1.6	1.65	0.19	8.3	8.3 m @ 1.6 g/t Au from 371 m	13.28
YAN036	350.2	353.2	4.42	2.66	2.64	3	3 m @ 4.42 g/t Au from 350.2 m	13.26
YNDC317	56	67	1.2			11	11 m @ 1.2 g/t Au from 56 m	13.2
YNDC69	40	51	1.2			11	11 m @ 1.2 g/t Au from 40 m	13.2
YNDC66	28	37	1.45			9	9 m @ 1.45 g/t Au from 28 m	13.05
YAN013	244.2	254	1.33	2.15	2.65	9.8	9.8 m @ 1.33 g/t Au from 244.2 m	13.03
YAN005	380.3	387	1.94	2.29	2.53	6.7	6.7 m @ 1.94 g/t Au from 380.3 m	13
YNDC136	80	89	1.43			9	9 m @ 1.43 g/t Au from 80 m	12.87
YAN028	319.7	327.9	1.57	2.65	4.43	8.2	8.2 m @ 1.57 g/t Au from 319.7 m	12.87
YAN011	363.7	366.6	4.42	3.19	2.94	2.9	2.9 m @ 4.42 g/t Au from 363.7 m	12.82
YAN011	297.3	304.7	1.73	1.98	3.54	7.4	7.4 m @ 1.73 g/t Au from 297.3 m	12.8
YNDC91	43	53	1.27			10	10 m @ 1.27 g/t Au from 43 m	12.7
YNDC54 YNDC354	0 75	5 83	2.53 1.58			5	5 m @ 2.53 g/t Au from 0 m 8 m @ 1.58 g/t Au from 75 m	12.65 12.64
YNDC334	23	31	1.58			8	8 m @ 1.57 g/t Au from 23 m	12.54
YNDC82	9	21	1.57			12	12 m @ 1.04 g/t Au from 9 m	12.56
YAN003	88	100	1.04	0.1	1.26	12	12 m @ 1.04 g/t Au from 88 m	12.48
YNDC33	5	100	1.04	0.1	1.20	12	10 m @ 1.24 g/t Au from 5 m	12.48
YAN036	235	240.4	2.28	13.89	1.75	5.4	5.4 m @ 2.28 g/t Au from 235 m	12.31
YNDC362	40	50	1.23			10	10 m @ 1.23 g/t Au from 40 m	12.3
YNDD304	117.25	120.3	4.01	1.52		3.05	3.1 m @ 4.01 g/t Au from 117.25 m	12.23
YNDC191	14	25	1.09			11	11 m @ 1.09 g/t Au from 14 m	11.99
YNDD175	45.5	54	1.41			8.5	8.5 m @ 1.41 g/t Au from 45.5 m	11.99
YNDD297	114.9	115.55	18.33	0.01		0.65	0.6 m @ 18.33 g/t Au from 114.9 m	11.91
YNDC174	49	59	1.19			10	10 m @ 1.19 g/t Au from 49 m	11.9
YNDC321B	83	92	1.32			9	9 m @ 1.32 g/t Au from 83 m	11.88
YNDD310	22	33	1.07			11	11 m @ 1.07 g/t Au from 22 m	11.77
YNDC63	37	43	1.96			6	6 m @ 1.96 g/t Au from 37 m	11.76
YAN001	379.1	384	2.4	4.98	4.1	4.9	4.9 m @ 2.4 g/t Au from 379.1 m	11.76
YNDC222	65	72	1.67			7	7 m @ 1.67 g/t Au from 65 m	11.69
YNDC197	76	84	1.46			8	8 m @ 1.46 g/t Au from 76 m	11.68
YNDC254	0	8	1.46			8	8 m @ 1.46 g/t Au from 0 m	11.68
EHRCD003	302	309	1.66			7	7 m @ 1.66 g/t Au from 302 m	11.62
YNDC104	8	18	1.16			10	10 m @ 1.16 g/t Au from 8 m	11.6
YNDC350	44	54	1.16			10	10 m @ 1.16 g/t Au from 44 m	11.6
YNDC129 YNDC433	80 17	82 26	5.77			2	2 m @ 5.77 g/t Au from 80 m 9 m @ 1.28 g/t Au from 17 m	11.54 11.52
YAN014	392	396	1.28 2.88	6.05	2.25	4	4 m @ 2.88 g/t Au from 392 m	11.52
EHRCD006	282.8	291	1.38	1.6	1.57	8.2	8.2 m @ 1.38 g/t Au from 282.8 m	11.32
YNDC73	10	18	1.41	1.0	1.57	8	8 m @ 1.41 g/t Au from 10 m	11.32
YNDC424	6	15	1.24			9	9 m @ 1.24 g/t Au from 6 m	11.16
YNDD303	123.9	125.4	7.3	0.07		1.5	1.5 m @ 7.3 g/t Au from 123.9 m	10.95
YNDC44	14	24	1.09			10	10 m @ 1.09 g/t Au from 14 m	10.9
YNDC181	16	22	1.8			6	6 m @ 1.8 g/t Au from 16 m	10.8
YNDC91	16	25	1.2			9	9 m @ 1.2 g/t Au from 16 m	10.8
EHRCD005	126	130	2.69			4	4 m @ 2.69 g/t Au from 126 m	10.76
YAN036	302.6	306	3.16	3.23	2.06	3.4	3.4 m @ 3.16 g/t Au from 302.6 m	10.74
YNDC359	36	45	1.19			9	9 m @ 1.19 g/t Au from 36 m	10.71
YNDC27	8	18	1.07			10	10 m @ 1.07 g/t Au from 8 m	10.7
YNDC314	22	32	1.07			10	10 m @ 1.07 g/t Au from 22 m	10.7
YNDC432	5	12	1.52			7	7 m @ 1.52 g/t Au from 5 m	10.64
YNDC5	13	22	1.18			9	9 m @ 1.18 g/t Au from 13 m	10.62
YNDC220	1	10	1.17			9	9 m @ 1.17 g/t Au from 1 m	10.53
YAN006A	376	385.9	1.06	1.72	0.59	9.9	9.9 m @ 1.06 g/t Au from 376 m	10.49
YNDD244	22	30	1.31			8	8 m @ 1.31 g/t Au from 22 m	10.48
YNDC79	15	24	1.16			9	9 m @ 1.16 g/t Au from 15 m	10.44
YNDC362	30	35	2.08			5	5 m @ 2.08 g/t Au from 30 m	10.4
YNDC131	17	25 298.1	1.29	1.76	2.24	8.7	8 m @ 1.29 g/t Au from 17 m	10.32
YAN023 YAN005	289.4 246	298.1	1.18 1.13	2.12	2.34 1.53	8.7	8.7 m @ 1.18 g/t Au from 289.4 m 9 m @ 1.13 g/t Au from 246 m	10.27 10.17
YNDC138	0	255	1.13	2.12	1.55	8	8 m @ 1.26 g/t Au from 0 m	10.17
YNDC138 YNDC163	3	9	1.26			6	6 m @ 1.67 g/t Au from 3 m	10.08
YNDC5	1	7	1.67			6	6 m @ 1.67 g/t Au from 1 m	10.02
INDC5	1	,	1.07			0		10.02

Hole ID	From Depth	To Depth	Au g/t	Ag g/t	S %	Interval Length (m)	Intersection	Gram metre intersection
YNDC321B	50	55	2			5	5 m @ 2 g/t Au from 50 m	10

APPENDIX 2 – YANDAN DRILL HOLE DETAILS & COLLAR LOCATION PLAN.

Yandan Project Drill Collars

Coordinates and Azimuth in MGA94 Zone 55

Companies: DGO - Drummond Gold, RSM – Ross Mining, SRL - Straits Resources Limited, WMC - Western Mining Corporation Only RC (Reverse Circulation) and DD (Diamond Drilling) related drilling methods presented. This table excludes some drill holes outside of the resource and prospect areas discussed in this release.

Hole ID	Drilling method	Length (m)	East	North	RL (m	Dip (°)	Azimuth (°)	Prospect	Company	Date Completed
	method	(m)			(m AHD)	()	(°)			Completed
EHRCD001	RCDD	383.8	497676.7	7644897	175.5	-60	360	East Hill	DGO	30/07/2009
EHRC002	RC	177	497616.3	7644921.2	175.9	-57	360	East Hill	DGO	10/07/2009
EHRCD003	RCDD	390.1	497654.3	7644956.1	179.2	-65	360	East Hill	DGO	26/07/2009
EHRC004	RC	153	497596	7644924.4	176	-60	360	East Hill	DGO	7/08/2009
EHRCD005	RCDD	259.6	497677.4	7644936.5	177.2	-60	360	East Hill	DGO	14/08/2009
EHRCD006	RCDD	410.5	497596	7644918.2	175.9	-60	358	East Hill	DGO	13/09/2009
EHRCD007	RCDD	381	497677.3	7644932.8	177.1	-60	358	East Hill	DGO	1/09/2009
EHRCD008	RCD	464.6	497328	7645010	183	-59	139	Yandan	DGO	27/08/2010
EHRCD009	RCD	391.1	497421	7645121	172	-58	140	Yandan	DGO	29/04/2011
EHRCD010	RCD	395.6	497373	7645059	171	-58	140	Yandan	DGO	2/09/2010
EHRCD011	RCDD	518.8	497251	7645088	179	-60	139	Yandan	DGO	25/10/2010
EHRCD012	RCDD	409.6	497213	7644658	173	-68	139	South Pit	DGO	12/06/2011
EHRCD013	RCDD	564	497418	7645579	168	-58	178	Yandan	DGO	31/10/2010
YAN001	RC	438	497611.9	7644958.4	180.4	-60	360	YPIT	SRL	10/09/2004
YAN002	RC	303	497656.2	7645026.3	187.7	-60	360	YPIT	SRL	12/09/2004
YAN003	RC	126	497324.7	7644621.9	174.4	-60	360	YPIT	SRL	7/10/2004
YAN004	RC	150	497341.6	7644363.7	168.6	-60	90	YPIT	SRL	29/09/2004
YAN005	DD	426.1	497615.6	7644891.6	174.3	-57	360	YPIT	SRL	26/06/2005
YAN006	DD	270.1	497420.9	7645173.6	171.7	-60	135	YPIT	SRL	3/07/2005
YAN006A	DD	432.2	497420.9	7645173.6	171.7	-60	135	YPIT	SRL	13/01/2006
YAN007	DD	411	497060.8	7644849.8	168.3	-57	3	YPIT	SRL	23/07/2005
YAN008	DD	413.8	496771	7644839	170	-58	315.5	YPIT	SRL	1/08/2005
YAN009	DD	149.3	497318.1	7644586.4	170.6	-60	360	YPIT	SRL	13/08/2005
YAN010	DD	338	497659.3	7645265.3	179.7	-60	180	YPIT	SRL	22/08/2005
YAN010A	DD	230.2	497659.3	7645265.3	179.7	-60	180	YPIT	SRL	23/08/2005
YAN011	DD	449.8	497572.9	7644886.7	173	-60	360	YPIT	SRL	8/09/2005
YAN012	RC	207.5	497655.3	7644891	174.4	-55	360	YPIT	SRL	13/01/2006
YAN012A	DD	156.5	497655.3	7644891	174.4	-55	360	YPIT	SRL	20/01/2006
YAN013	DD	423.7	497572.1	7644847.1	171.3	-60	358	YPIT	SRL	21/01/2006
YAN014 YAN015	RC DD	453.5 450	497533.3	7644846.2	172.1	-60 -60	359	YPIT YPIT	SRL SRL	9/02/2006
YAN015	RC	450	497493.5 497655.7	7644844.5 7644915.9	172.6 176.7	-50	358 1	YPIT	SRL	1/02/2006 8/02/2006
YAN010 YAN017	RC	535.6	497532.9	7644888	173.6	-60	360	YPIT	SRL	16/02/2006
YAN017	RC	526.2	497453.1	7644888.5	173.0	-62	358	YPIT	SRL	15/02/2006
YAN018	RC	142	497455.1	7644908.2	169.1	-62	180	YPIT	SRL	12/02/2006
YAN020	RC	61	497756.7	7645051.2	184.1	-60	91	YPIT	SRL	12/02/2006
YAN020	RC	130	497747.1	7645059.4	184.8	-60	90	YPIT	SRL	14/02/2006
YAN022	RC	429.2	497655.6	7644876.4	173.9	-62	7	YPIT	SRL	4/03/2006
YAN023	RC	410.1	497695.4	7644917	177	-63	2	YPIT	SRL	12/03/2006
YAN024	RC	130	497838.9	7645062.8	182.1	-60	264	YPIT	SRL	2/03/2006
YAN025	RC	468.3	497412.4	7644926.4	170.1	-63	355	YPIT	SRL	23/03/2006
YAN026	RC	130	497226.8	7644824.1	172.3	-60	2	YPIT	SRL	4/03/2006
YAN027	RC	540.6	497311.4	7644564.9	169.3	-60	6	YPIT	SRL	25/03/2006
YAN028	RC	381.5	497694.3	7644877.1	174.3	-62	1	YPIT	SRL	29/05/2006
YAN029	RC	372.5	497614.8	7644849.6	171.9	-64	1	YPIT	SRL	5/06/2006
YAN030	RC	372.5	497653.5	7644836.6	171.8	-64	0.5	YPIT	SRL	11/06/2006
YAN031	RC	357.3	497734.5	7644876.8	174	-63	360	YPIT	SRL	18/06/2006
YAN032	RC	354.5	497628.3	7645048	191	-66	78	YPIT	SRL	24/06/2006
YAN033	RC	282.8	497457.6	7644835.5	173	-60	139	YPIT	SRL	30/06/2006
YAN034	RC	100	497605.8	7644689.6	169.5	-60	315	YPIT	SRL	1/07/2006
YAN035	RC	702.3	496898.7	7645301.4	173.3	-62	167	YPIT	SRL	26/07/2006
YAN036	RC	410.6	497696.2	7644961.3	179.9	-63	357	YPIT	SRL	3/08/2006
YAN037	RC	363.5	497567.6	7645180.2	180.4	-57	142	YPIT	SRL	15/08/2006
YAN038	RC	438.4	497390.4	7645111.9	174.3	-69	140	YPIT	SRL	1/09/2006
YAN039	RC	270.4	496814.9	7645246.4	171.7	-55	189.5	YPIT	SRL	8/09/2006
YAN040	RC	259.5	497657.5	7645472.1	178.6	-62	180	YPIT	SRL	24/09/2006

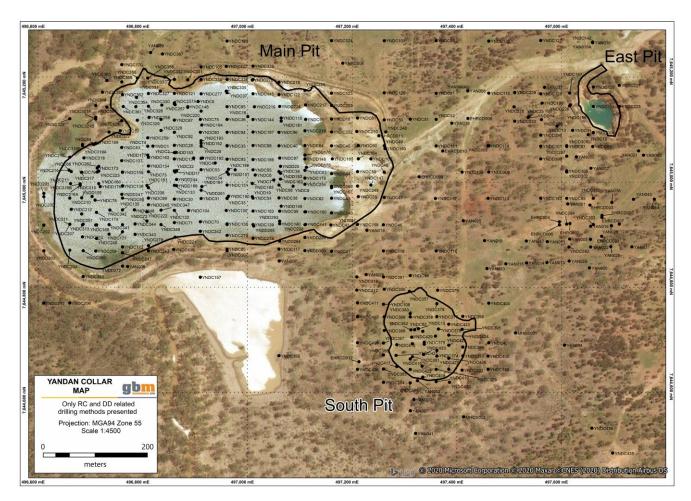
YAN041	RC	275.9	497321.3	7644521.7	168	-62	359.5	YPIT	SRL	6/10/2006
YAN042	RC	466.5	497617.4	7645432.3	177.2	-63	176.5	YPIT	SRL	24/10/2006
YAN043	RC	369.7	497737.5	7644967.2	179	-63	357.5	YPIT	SRL	17/11/2006
YAN044	RC	435.5	497777.3	7644967.5	178.1	-64	356	YPIT	SRL	26/11/2006
YNDC1	RC	59	496819.2	7645068.3	189.4	-60	151	Yandan	RSM	
YNDC2	RC	59	496860.3	7645055.9	193.4	-60	151	Yandan	RSM	
YNDC3	RC	59	496897.1	7645045.5	193.3	-60	151	Yandan	RSM	
YNDC4	RC	59	496938.2	7645036.1	192.7	-60	151	Yandan	RSM	
YNDC5	RC	59	496976.5	7645023.3	190	-60	151	Yandan	RSM	
YNDC6	RC	59	497014.7	7645013.3	188.3	-60	151	Yandan	RSM	
YNDC7	RC	77	497050.2	7645003.9	188.5	-60	151	Yandan	RSM	
YNDC8	RC	59	497087	7644992	188	-60	151	Yandan	RSM	
YNDC9	RC	59	496905.6	7645153.2	188.5	-60	151	Yandan	RSM	
YNDC10 YNDC11	RC RC	72 77	496756.9 497621.2	7645097.4 7645098.3	175.7 195	-60 -60	151 151	Yandan Yandan	RSM RSM	
YNDC12	RC	59	497650.9	7645098.3	193.7	-60	116	Yandan	RSM	
YNDC13	RC	59	497591.4	7645106.7	194.6	-60	116	Yandan	RSM	
YNDC14	RC	63	497536.1	7645123.1	182	-60	116	Yandan	RSM	
YNDC15	RC	47	497326.5	7644720.8	192.8	-90	360	Yandan	RSM	
YNDC16	RC	59	497000.6	7645124.7	194.3	-60	151	Yandan	RSM	
YNDD17	DD	101.7	496861.7	7645019.1	193.2	-60	98	Yandan	WMC	
YNDD18	DD	239.5	497160.7	7645120	186.7	-60	191	Yandan	WMC	
YNDD19	DD	95.9	497009.1	7644972.1	182.7	-70	180	Yandan	WMC	
YNDD20	DD	220	497062.9	7645029.9	192.4	-70	180	Yandan	WMC	
YNDC21	RC	50	497911.6	7645508.2	187	-90	180	Yandan		
YNDC22	RC	50	498100	7645697.2	179	-90	180	Yandan		
YNDC23	RC	55	496803.6	7645292.3	170.7	-90	360	Yandan	RSM	
YNDC24	RC	93	497928.5	7645878.2	176	-90	180	Yandan		
YNDC25	RC	65	497537.6	7645124.4	182.1	-90	180	Yandan	RSM	
YNDC26	RC	21	497990.9	7645619.2	181	-90	180	Yandan	2014	
YNDC27	RC	93	496761.1	7645018.8	191.5	-70	180	Yandan	RSM	
YNDC28	RC	108	496860.3	7645069.8	191.9	-70	180	Yandan	RSM	
YNDC29 YNDC30	RC RC	108	496911.3 496860.3	7645068.2 7644967.4	193.6 184.6	-70 -70	180 180	Yandan Yandan	RSM RSM	_
YNDC31	RC	96	496911.3	7644968.6	184.0	-70	180	Yandan	RSM	
YNDC32	RC	76	496860.3	7645021.1	193.5	-70	180	Yandan	RSM	
YNDC33	RC	99	496960.9	7644968.6	182.3	-70	180	Yandan	RSM	
YNDC34	RC	93	496960.9	7645018.9	190.5	-70	180	Yandan	RSM	
YNDC35	RC	73	496960.9	7645068.7	194.4	-70	180	Yandan	RSM	
YNDC36	RC	78	496960.9	7645119.2	192.6	-60	180	Yandan	RSM	
YNDC37	RC	108	496960.9	7645169.9	188.9	-70	180	Yandan	RSM	
YNDC38	RC	82	497060.1	7644969.8	185	-70	180	Yandan	RSM	
YNDC39	RC	102	497060.1	7645019.7	191.1	-70	180	Yandan	RSM	
YNDC40	RC	108	497060.1	7645069	195.2	-70	180	Yandan	RSM	
YNDC41	RC	108	497160.7	7644868.2	168.6	-70	180	Yandan	RSM	
YNDC42	RC	108	497159.3	7644918.2	174.7	-70	180	Yandan	RSM	
YNDC43	RC	66	497160.7	7644969.2	182	-70	180	Yandan	RSM	
YNDC44	RC	108	497160.7	7645016	187.8	-70	180	Yandan	RSM	
YNDC45 YNDC46	RC RC	108 108	497160.7 497259.9	7645069 7644918.7	189.2 168.5	-70 -70	180 180	Yandan Yandan	RSM RSM	
YNDC46 YNDC47	RC	108	497259.9	7644918.7	168.5	-70 -70	180	Yandan Yandan	RSM	
YNDC47 YNDC48	RC	108	497261.3	7645018.7	172.4	-70	180	Yandan	RSM	
YNDC48	RC	108	497261.3	7645069.2	170.8	-70	180	Yandan	RSM	
YNDC50	RC	108	497261.3	7645118.5	175.8	-70	180	Yandan	RSM	
YNDC51	RC	108	497310.9	7645119.7	173.7	-70	180	Yandan	RSM	
YNDC52	RC	108	497360.4	7645119.1	171.1	-70	180	Yandan	RSM	
YNDC53	RC	108	496911.3	7645023.4	191.3	-70	180	Yandan	RSM	
YNDC54	RC	94	497010.5	7644969.4	181.6	-70	180	Yandan	RSM	
YNDC55	RC	108	497010.5	7645023.2	189.7	-70	180	Yandan	RSM	
YNDC56	RC	108	497010.5	7645069.6	194.7	-70	180	Yandan	RSM	
YNDC57	RC	108	497210.3	7644919.2	171	-70	180	Yandan	RSM	
YNDC58	RC	76	497211.7	7644972.2	177.7	-70	180	Yandan	RSM	
YNDC59	RC	108	497210.3	7645019.9	182.3	-70	180	Yandan	RSM	
YNDC60	RC	108	497211.7	7645069.6	184	-70	180	Yandan	RSM	
YNDC61	RC	108	497210.3	7645121.9	181.8	-70	180	Yandan	RSM	
YNDC62	RC	91	497109.7	7644968.7	184.1	-70	180	Yandan	RSM	
YNDC63	RC	108	497109.7	7645022.3	191.9	-70	180	Yandan	RSM	
YNDC64	RC	108	497109.7	7645069.5	193.1	-70	180	Yandan	RSM	

YNDC65	RC	108	497111.1	7645119.2	193	-70	180	Yandan	RSM	
YNDC66	RC	54	496663.4	7645019.7	169.1	-70	180	Yandan	RSM	
YNDC67	RC	108	496860.3	7645117.7	188.4	-70	180	Yandan	RSM	
YNDC68	RC	62	496761.1	7644969.4	189.8	-70	180	Yandan	RSM	
YNDC69	RC	65	496810.7	7644969.3	187.1	-70	180	Yandan	RSM	
YNDC70	RC	54	496909.9	7644924.4	176.9	-70	180	Yandan	RSM	
YNDC71	RC	44	496860.3	7644922.8	177.1	-70	180	Yandan	RSM	
YNDC72	RC	108	496807.9	7644925.7	178.9	-70	180	Yandan	RSM	
YNDC73	RC	77	496810.7	7645019.6	192.7	-70	180	Yandan	RSM	
YNDC74	RC	108	496809.3	7645068.1	188.7	-90	180	Yandan	RSM	
YNDC75	RC	108	496909.9	7645119.2	192	-70	180	Yandan	RSM	
YNDC76	RC	107	496761.1	7644918.7	179.2	-70	180	Yandan	RSM	
YNDC77	RC	108	496710.1	7644918.1	173.5	-70	180	Yandan	RSM	
YNDC78	RC	88	496708.7	7644965.6	183	-70	180	Yandan	RSM	
YNDC79	RC	104	496712.9	7645019	187.8	-90	360	Yandan	RSM	
YNDC80 YNDC81	RC	77	497360.4 497360.4	7645269	173	-70	180	Yandan	RSM	
YNDC81	RC RC	77 65	497319.4	7645168.9 7644719	171.9 192.7	-70 -70	180 180	Yandan Yandan	RSM RSM	
YNDC83	RC	101	496759.7	7645065.7	192.7	-70	180	Yandan	RSM	
YNDC84	RC	101	496710.1	7645073	170.3	-70	180	Yandan	RSM	
YNDC85	RC	108	496960.9	7644872.4	168.5	-70	180	Yandan	RSM	
YNDC86	RC	108	497310.9	7644822.2	178.1	-70	180	Yandan	RSM	
YNDC87	RC	108	497609.8	7645067.8	191.7	-70	180	Yandan	RSM	
YNDC88	RC	100	497659.4	7645067.8	191.1	-70	180	Yandan	RSM	
YNDC89	RC	101	497609.8	7644969.1	180.5	-70	180	Yandan	RSM	
YNDC90	RC	106	496909.9	7645094.7	192.6	-70	180	Yandan	RSM	
YNDC91	RC	108	496911.3	7645045.1	193.3	-70	180	Yandan	RSM	
YNDC92	RC	108	496860.3	7645094.7	190.2	-70	180	Yandan	RSM	
YNDC93	RC	108	496960.9	7645043.5	192.8	-70	180	Yandan	RSM	
YNDC94	RC	104	496960.9	7645094.7	193.8	-70	180	Yandan	RSM	
YNDC95	RC	99	496960.9	7645143.5	191.2	-70	180	Yandan	RSM	
YNDC96	RC	108	497060.1	7645094.8	195.9	-70	180	Yandan	RSM	
YNDC97	RC	108	497061.5	7645045.7	194	-70	180	Yandan	RSM	
YNDC98	RC	108	497060.1	7644994.2	188	-70	180	Yandan	RSM	
YNDC99	RC	88	497061.5	7644944.5	181.9	-70	180	Yandan	RSM	
YNDC100	RC	101	497660.8	7644969.2	179.2	-70	180	Yandan	RSM	
YNDC101	RC	108	497560.2	7645068.3	187.8	-70	180	Yandan	RSM	
YNDC102	RC	100	497410.1	7645019	169.8	-90	180	Yandan	RSM	
YNDC103	RC	100	497261.2	7645269	176.1	-90	180	Yandan	RSM	
YNDC104	RC	81	496887.2	7644945.6	179.9	-90	180	Yandan	RSM	
YNDC105	RC	100	496911.3	7645219	181.2	-90	180	Yandan	RSM	
YNDC106	RC	100	497609.8	7645021.2	186.1	-90	180	Yandan	RSM	
YNDC107 YNDC108	RC RC	100 100	497235.8 496912.6	7645044.2 7645469.2	181 170.5	-90 -90	180 180	Yandan Yandan	RSM	
YNDC109	RC	61	497259.9	7644767.5	181.7	-90	180	Yandan	RSM	
YNDC110	RC	80	497064.3	7645121.8	195.5	-70	180	Yandan	RSM	
YNDC110 YNDC111	RC	69	497360.5	7645068.9	171.1	-70	180	Yandan	RSM	
YNDC112	RC	72	497359.1	7644968.8	169	-70	180	Yandan	RSM	
YNDC112	RC	72	497459.7	7644969	172.3	-70	180	Yandan	RSM	
YNDC114	RC	72	497459.6	7645069	174.5	-70	180	Yandan	RSM	
YNDC115	RC	72	497461	7645169.1	174.6	-70	180	Yandan	RSM	
YNDC116	RC	72	497360.5	7644869	173.3	-70	180	Yandan	RSM	
YNDC117	RC	72	497060.1	7644872.6	171.1	-70	180	Yandan	RSM	
YNDC118	RC	72	497259.9	7644868.9	171.1	-70	180	Yandan	RSM	
YNDC119	RC	24	496858.9	7644871.6	169.2	-70	180	Yandan	RSM	
YNDC120	RC	72	496960.9	7645268.4	178.4	-70	180	Yandan	RSM	
YNDC121	RC	72	496860.3	7645168.6	184.1	-70	180	Yandan	RSM	
YNDC122	RC	72	497060.1	7645166.3	191.7	-70	180	Yandan	RSM	
YNDC123	RC	53	497160.7	7645169.1	185.4	-70	180	Yandan	RSM	
YNDC124	RC	72	497160.6	7645269.2	181	-70	180	Yandan	RSM	
YNDC125	RC	72	497261.3	7645169.8	178.2	-70	180	Yandan	RSM	
YNDC126	RC	72	497461	7645268.2	172.8	-70	180	Yandan	RSM	
	RC	72	497560.2	7645269.5	178.1	-70	180	Yandan	RSM	
YNDC127					101 2	-70	180	Yandan	RSM	
YNDC128	RC	87	497560.2	7645168	181.3					
YNDC128 YNDC129	RC RC	87	497660.8	7645181	185.3	-70	180	Yandan	RSM	
YNDC128 YNDC129 YNDC130	RC RC RC	87 75	497660.8 496959.5	7645181 7644946	185.3 179.6	-70 -70	180 180	Yandan Yandan	RSM RSM	
YNDC128 YNDC129	RC RC	87	497660.8	7645181	185.3	-70	180	Yandan	RSM	

YNDC133	RC	46	496860.3	7644993.6	189.4	-70	180	Yandan	RSM	
YNDC134	RC	35	496860.3	7645043.8	193.3	-70	180	Yandan	RSM	
YNDC135	RC	87	496761.1	7644947.1	186.7	-70	180	Yandan	RSM	
YNDC136	RC	91	496761.1	7644992.2	192.2	-90	180	Yandan	RSM	
YNDC137	RC	80	496759.7	7645040.6 7644920.3	187.5	-70	180	Yandan	RSM	
YNDC138 YNDC139	RC RC	87	496960.9 497010.5	7644920.3	176.2 177.1	-70 -70	180 180	Yandan Yandan	RSM RSM	
YNDC140	RC	38	497061.5	7644920.5	177.1	-70	180	Yandan	RSM	
YNDC141	RC	87	497111.1	7644919.4	177.6	-70	180	Yandan	RSM	
YNDC142	RC	72	497659.4	7645266.5	179.9	-70	180	Yandan	RSM	
YNDC143	RC	80	497560.3	7644969.1	178.5	-70	180	Yandan	RSM	
YNDC144	RC	80	497010.5	7645118.9	194.7	-70	180	Yandan	RSM	
YNDC145	RC	80	497010.5	7645167.8	191.3	-70	180	Yandan	RSM	
YNDC146	RC	100	496885.8	7645143.2	188.4	-90	360	Yandan	RSM	
YNDC147	RC	100	497235.8	7644994.2	178	-90	360	Yandan	RSM	
YNDD148	DD	80	497109.7	7645044	193.5	-70	180	Yandan	WMC	
YNDD149	DD	150	497064.3	7644954	182.5	-70	180	Yandan	WMC	
YNDD150	DD	90	497062.9	7645016.7	190.8	-70	180	Yandan	WMC	
YNDD151	DD	88.9	496963.7	7645014.7	190.2	-70	180	Yandan	WMC	
YNDD152	DD	97	496911.3	7645073.6	193.3	-70	182	Yandan	WMC	
YNDD153	DD	119.7	496863.1	7645056.3	193	-69	183	Yandan	WMC	
YNDD154	DD	140.2	496810.7	7645030.4	192.2	-70	180	Yandan	WMC	
YNDD155	DD	150.2	496703	7644972.3	183	-70	180	Yandan	WMC	
YNDC156 YNDC157	RC	96	497060.1	7644669.5	167.8	-90	360	Yandan	RSM	
YNDC157 YNDC158	RC RC	100 100	496909.9 497210.3	7644818.9 7644919.2	167.4 170.5	-90 -90	360 360	Yandan Yandan	RSM RSM	
YNDC158 YNDC159	RC	84	497210.3	7644919.2	170.5	-90	360	Yandan Yandan	RSIM	
YNDC160	RC	102	496761.1	7644992.9	192.1	-70	180	Yandan	RSM	
YNDC161	RC	69	496807.9	7644993.4	190.9	-70	360	Yandan	RSM	
YNDC162	RC	66	496810.7	7645046.8	190.8	-70	180	Yandan	RSM	
YNDC163	RC	40	497262.7	7645063.7	178.1	-70	180	Yandan	RSM	
YNDC164	RC	60	497211.7	7645044.3	184	-70	180	Yandan	RSM	
YNDC165	RC	60	497162.1	7645044.1	189.6	-70	180	Yandan	RSM	
YNDC166	RC	29	497160.7	7644992	184.1	-70	180	Yandan	RSM	
YNDC167	RC	50	497160.7	7644989.2	184.2	-70	180	Yandan	RSM	
YNDC168	RC	97	496711.6	7644918.5	173.8	-90	360	Yandan	RSM	
YNDC169	RC	79	496705.9	7645071.4	169.9	-90	360	Yandan	RSM	
YNDC170	RC	102	496759.7	7645223.3	169	-90	360	Yandan	RSM	
YNDC171	RC	60	496761.1	7644905.2	177.4	-70	188	Yandan	RSM	
YNDC172	RC	81	496761.1	7644876.7	167.2	-60	360	Yandan	RSM	
YNDC173	RC	69	496712.9	7645026.4	185.3	-70	180	Yandan	RSM	
YNDC174	RC DD	82	496711.5 496718.6	7644942.3	180.4	-70	180	Yandan	RSM	
YNDD175 YNDC176	RC	119.6 60	496718.6	7644991.2 7645051.3	190.2 193.6	-70 -60	180 360	Yandan Yandan	WMC RSM	
YNDD177	DD	100	496809.3	7645051.3	193.0	-70	180	Yandan	WMC	
YNDC178	RC	60	497112.5	7645028	192.2	-60	360	Yandan	RSM	
YNDC179	RC	60	497109.7	7645007.5	189.7	-60	360	Yandan	RSM	
YNDC180	RC	60	497111.1	7644943.3	180.6	-60	360	Yandan	RSM	
YNDC181	RC	60	497064.3	7645116	195.8	-60	180	Yandan	RSM	
YNDC182	RC	60	497062.9	7645005.5	188.8	-60	360	Yandan	RSM	
YNDC183	RC	60	497010.5	7644944.8	178.8	-70	180	Yandan	RSM	
YNDD184	DD	58.6	496864.6	7645021.4	193.3	-70	360	Yandan	WMC	
YNDC185	RC	60	497009.1	7644997.3	186.2	-70	180	Yandan	RSM	
YNDC186	RC	70	497010.5	7645042.7	191.9	-70	180	Yandan	RSM	
YNDC187	RC	60	497010.5	7645095	195.3	-70	180	Yandan	RSM	
YNDD188	DD	74	496864.6	7644993	189.3	-70	360	Yandan	WMC	
YNDC189	RC	70	496963.7	7645024.3	190.8	-60	360	Yandan	RSM	
YNDC190	RC	60	496963.7	7644973	183.5	-70	360	Yandan	RSM	
YNDC191	RC	82	496912.7	7644991.4	186.8	-70	180	Yandan	RSM	
YNDC192 YNDC193	RC RC	60 50	496914.1 496911.3	7645045.6 7645078.6	193.7 193.2	-70 -70	360 360	Yandan Yandan	RSM RSM	
YNDC193 YNDC194	RC	40	496911.3	7645078.6	193.2	-70 -70	360	Yandan Yandan	RSM	
YNDC194 YNDC195	RC	90	497660.8	7645108.8	192	-70	180	Yandan	RSM	
YNDC195	RC	90	497615.5	7645145.1	192.9	-70	180	Yandan	RSM	
YNDC197	RC	90	497615.5	7645169.4	185.5	-70	180	Yandan	RSM	
YNDD198	DD	89.9	497561.6	7645118.8	187.5	-70	185	Yandan	WMC	
YNDC199	RC	90	497563.1	7645150.4	182.4	-70	180	Yandan	RSM	
YNDC200	RC	54	496610.9	7644972	166.3	-60	180	Yandan	RSM	

YNDD201	DD	199.7	496610.9	7644978.3	166.3	-60	180	Yandan	WMC	
YNDC202	RC	35	496611	7644917.9	166.9	-60	180	Yandan	RSM	
YNDD203	DD	200	496611	7644869	167.2	-60	186	Yandan	WMC	
YNDC204	RC	90	496660.6	7644870.1	166.3	-60	360	Yandan	RSM	
YNDC205	RC	120	496510.4	7644719.2	170.1	-60	180	Yandan	RSM	
YNDC206	RC	84	496660.6	7644769.8	167.9	-60	360	Yandan	RSM	
YNDC207	RC	100	496660.5	7644919.7	166.9	-60	360	Yandan	RSM	
YNDC208	RC	90	496810.7	7644989	190.5	-70	180	Yandan	RSM	
YNDC209	RC	70	496710.1	7644868.6	166.5	-70	180	Yandan	RSM	
YNDC210	RC	96	496660.5	7644969.3	168.1	-70	180	Yandan	RSM	
YNDC211	RC	97	496661.9	7644996.8	168.9	-70	180	Yandan	RSM	
YNDC212	RC	94	496663.4	7644947.8	167.2	-70	180	Yandan	RSM	
YNDD213	DD	200	496611	7644769.6	168.3	-60	180	Yandan	WMC	
YNDC214 YNDC215	RC RC	88 57	496659.1 496660.5	7645022.3 7645047.3	167.1 166.3	-70 -70	180 180	Yandan Yandan	RSM RSM	
YNDC216	RC	50	497109.7	7645097.5	192.9	-70	180	Yandan	RSM	
YNDC217	RC	50	497111.1	7645146.8	191.1	-70	180	Yandan	RSM	
YNDC218	RC	50	497060.1	7645190	189.1	-70	180	Yandan	RSM	
YNDC219	RC	50	497013.3	7645143.2	193.4	-70	180	Yandan	RSM	
YNDC220	RC	60	496911.3	7645134.8	189.4	-70	180	Yandan	RSM	
YNDC221	RC	40	496861.7	7644895.1	173.7	-70	180	Yandan	RSM	
YNDC222	RC	80	496807.9	7644943.3	183.8	-70	180	Yandan	RSM	
YNDC223	RC	80	496715.8	7645020.7	187.5	-70	180	Yandan	RSM	
YNDC224	RC	50	497061.5	7645143.8	194.4	-70	180	Yandan	RSM	
YNDC225	RC	90	497710.4	7645143.9	189.1	-70	180	Yandan	RSM	
YNDD226	DD	77.3	497616.9	7645146.9	188.5	-70	180	Yandan	WMC	
YNDC227	RC	90	497710.4	7645184.1	186.3	-70	180	Yandan	RSM	
YNDC228	RC	80	497509.2	7645143.1	177.9	-70	180	Yandan	RSM	
YNDC229	RC	86	497510.6	7645170.4	177.3	-70	180	Yandan	RSM	
YNDC230 YNDC236	RC RC	84	497510.6 497490.7	7645115.8 7645959.2	179.1 170	-70 -90	180 360	Yandan Yandan	RSM RSM	
YNDC237	RC	8	497150.6	7646219.2	167	-90	360	Yandan	RSM	
YNDC238	RC	88	497109.7	7644943.2	180.5	-70	180	Yandan	RSM	
YNDC239	RC	80	497010.5	7644893	174.6	-70	180	Yandan	RSM	
YNDC240	RC	50	497160.7	7644941.3	178	-70	180	Yandan	RSM	
YNDD241	DD	100	496759.7	7644976.5	191	-70	180	Yandan	WMC	
YNDC242	RC	50	496909.9	7644906.3	174.4	-70	180	Yandan	RSM	
YNDC243	RC	70	496810.7	7644868.9	167.8	-70	180	Yandan	RSM	
YNDD244	DD	105.2	496864.6	7645004.9	192.2	-70	180	Yandan	WMC	
YNDD245	DD	100	496810.7	7644956.6	185.3	-70	180	Yandan	WMC	
YNDC246	RC	80	496711.6	7644892.5	168.7	-70	180	Yandan	RSM	
YNDC247	RC	50	496761.2	7644865.2	167	-70	180	Yandan	RSM	
YNDC248	RC	50	497264.1	7645095.2	175.4	-70	180	Yandan	RSM	
YNDC249 YNDC250	RC RC	50 50	497210.3 497208.8	7644992.3 7645096.2	180.7 182.8	-70 -70	180 180	Yandan Yandan	RSM RSM	
YNDC251	RC	72	497208.8	7644919.7	167	-60	360	Yandan	RSM	
YNDC252	RC	50	497160.7	7645095.2	187.1	-70	180	Yandan	RSM	
YNDC253	RC	50	497160.7	7645145.7	186.4	-70	180	Yandan	RSM	
YNDC254	RC	60	497109.7	7644995.7	188.8	-70	180	Yandan	RSM	
YNDD255	DD	120	496715.8	7644996.9	190.5	-50	270	Yandan	WMC	
YNDC256	RC	80	497109.6	7645174.5	188.7	-70	180	Yandan	RSM	
YNDC257	RC	56	496861.7	7645147.2	186.3	-70	180	Yandan	RSM	
YNDC257A	RC	19	496860.3	7645148.7	185.5	-70	180	Yandan	RSM	
YNDC258	RC	70	496812.1	7645122.9	184.2	-70	180	Yandan	RSM	
YNDC259	RC	60	496809.3	7645084	184	-90	360	Yandan	RSM	
YNDC260	RC	80	497710.4	7644920	176.2	-60	270	Yandan	RSM	
YNDD261	DD	95.8	496911.3	7644984.4	185.6	-70	180	Yandan	WMC	
YNDC262	RC	60	496715.8	7645029.9	182.7	-80	360	Yandan	RSM	
YNDC263 YNDC264	RC RC	80 80	497660.9 497609.8	7644919.2 7644919.9	180 176	-60 -60	270 270	Yandan Yandan	RSM RSM	
YNDC264 YNDC276	RC	50	497609.8	7645194.1	188.3	-60	180	Yandan	RSM	
YNDC277	RC	60	496911.3	7645167.8	186.9	-70	180	Yandan	RSM	
YNDC278	RC	50	496810.7	7644879	167.7	-80	360	Yandan	RSM	
YNDC279	RC	50	496960.9	7644898.5	173.5	-70	180	Yandan	RSM	
YNDC292	RC	60	497614.1	7644876.3	172.9	-60	180	Yandan	RSM	
YNDD293	DD	150.3	497061.5	7644925.5	178.7	-60	27	Yandan	WMC	
YNDD294	DD	220	497061.5	7644887.5	173.1	-60	24	Yandan	WMC	
YNDD295	DD	327	497011.9	7644916.2	176.5	-60	360	Yandan	WMC	

YNDD296	DD	89.4	497560.2	7645089.2	193	-60	360	Yandan	WMC	
YNDD297	DD	250	497609.8	7645049.2	188	-60	360	Yandan	WMC	
YNDD298	DD	180.2	497109.7	7644918.9	177.8	-58	13	Yandan	WMC	
YNDD299	DD	200.1	497109.7	7644894.5	174.4	-64	360	Yandan	WMC	
YNDD300	DD	222.1	497109.7	7644869.4	171	-60	360 360	Yandan	WMC	
YNDD301 YNDD302	DD DD	200 300.2	497609.8 497609.8	7645069.2 7645019.2	192 186	-60 -60	360	Yandan Yandan	WMC WMC	
YNDD302 YNDD303	DD	300.2	497560.2	7645019.2	185	-60	360		WMC	
YNDD303	DD	200	497660.8	7645094.2	185	-60	360	Yandan Yandan	WMC	
YNDD305	DD	199.6	497461.1	7645069.2	170	-60	360	Yandan	WMC	
YNDD306	DD	309.6	497461.1	7645019.2	170	-60	360	Yandan	WMC	
YNDD307	DD	300	496960.9	7644869.2	168	-60	360	Yandan	WMC	
YNDD308	DD	320	496960.9	7644919.2	177	-60	360	Yandan	WMC	
YNDD309	DD	298	496960.9	7644969.2	183	-60	360	Yandan	WMC	
YNDD310	DD	150	496960.9	7645069.2	194.4	-60	360	Yandan	WMC	
YNDC311	RC	80	496660.5	7644919.5	166.7	-70	180	Yandan	RSM	
YNDC312	RC	66	496684.6	7644895.6	166.5	-70	180	Yandan	RSM	
YNDC313	RC	75	496684.6	7644918.3	167	-70	180	Yandan	RSM	
YNDC314	RC	96	496683.2	7644939.2	171.2	-70	180	Yandan	RSM	
YNDC315	RC	68	496683.2	7644969.8	176.3	-70	180	Yandan	RSM	
YNDC316A	RC	26	496680.4	7644993.7	177.5	-70	180	Yandan	RSM	
YNDC316B	RC	96	496680.4	7644996.4	177.7	-70	180	Yandan	RSM	
YNDC317	RC	100	496683.2	7645018.6	177.7	-70	180	Yandan	RSM	
YNDC318	RC	80	496687.4	7645046	173.9	-70	180	Yandan	RSM	
YNDC319A	RC	42	496684.6	7645069.3	168.1	-70	180	Yandan	RSM	
YNDC319B	RC	75	496684.6	7645071.4	168.1	-70	180	Yandan	RSM	
YNDC320	RC	99	496660.5	7645120.3	162.7	-70	180	Yandan	RSM	
YNDC321A YNDC321B	RC	44	496710.1 496710.1	7645119.6	168.9 168.7	-70 -70	180	Yandan	RSM	
YNDC321B	RC RC	100	496735.6	7645123.3 7645095.1	172.8	-70	180 180	Yandan Yandan	RSM RSM	
YNDC323	RC	90	496759.7	7645116.6	172.7	-70	180	Yandan	RSM	
YNDC326	RC	90	496810.7	7645144.2	182.8	-70	180	Yandan	RSM	
YNDC327	RC	100	496810.7	7645168.5	180.2	-70	180	Yandan	RSM	
YNDC328	RC	60	496834.8	7645098.1	186.2	-70	180	Yandan	RSM	
YNDC329	RC	100	496834.8	7645119.1	184.1	-70	180	Yandan	RSM	
YNDC330	RC	100	496836.2	7645146.3	184.8	-70	180	Yandan	RSM	
YNDC331	RC	100	496833.4	7645172.9	181.7	-70	180	Yandan	RSM	
YNDC332	RC	90	496860.3	7645150.7	185.6	-70	180	Yandan	RSM	
YNDC333	RC	90	496860.3	7645195.4	179.4	-70	180	Yandan	RSM	
YNDC334	RC	80	496911.3	7645195.3	184.2	-70	180	Yandan	RSM	
YNDC335	RC	115	496959.5	7645173	188.4	-70	180	Yandan	RSM	
YNDC336	RC	80	496960.9	7645195.2	186.4	-70	180	Yandan	RSM	
YNDC337	RC	80	496959.4	7645219.9	183.3	-70	180	Yandan	RSM	
YNDC338	RC	80	497010.5	7645195	188.3	-70	180	Yandan	RSM	_
YNDC339 YNDC340	RC	80	497010.5	7645220.6	185.2	-70	180	Yandan	RSM	
YNDC340 YNDC341	RC RC	90 68	496735.6 496735.6	7644900.6 7644918.9	174 178.1	-70 -70	180 180	Yandan Yandan	RSM RSM	
YNDC341 YNDC342	RC	90	496735.6	7644918.9	178.1	-70	180	Yandan	RSM	
YNDC342 YNDC343	RC	90	496785.2	7644940.0	175.5	-70	180	Yandan	RSM	
YNDC344	RC	90	496785.2	7644920	179.7	-70	180	Yandan	RSM	
YNDC346	RC	90	496834.8	7644918.9	177.1	-70	180	Yandan	RSM	
YNDC347	RC	60	496834.8	7644946.4	181.9	-70	180	Yandan	RSM	
YNDC348	RC	90	496783.8	7644946.9	185.8	-70	180	Yandan	RSM	
YNDC349	RC	115	496710.1	7645145.5	169	-70	180	Yandan	RSM	
YNDC350	RC	100	496885.8	7645142.1	188.8	-70	180	Yandan	RSM	
YNDC351	RC	100	496885.8	7645194.3	182.6	-70	180	Yandan	RSM	
YNDC352	RC	88	496841.8	7645199.6	175.9	-70	180	Yandan	RSM	
YNDC353	RC	99	496789.4	7645117.7	179	-70	180	Yandan	RSM	
YNDC354	RC	102	496786.6	7645143.5	180.7	-70	180	Yandan	RSM	
YNDC355	RC	57	496788	7645160.9	179.5	-70	180	Yandan	RSM	
YNDC356	RC	95	496789.4	7645198	172.9	-70	180	Yandan	RSM	
YNDC357	RC	100	497309.5	7644791.9	182.5	-60	180	Yandan	RSM	
YNDC358	RC	95	497310.9	7644743.5	190.8	-60	180	Yandan	RSM	
YNDC359	RC	93	497315.2	7644692.3	188.3	-70	180	Yandan	RSM	
YNDC360	RC	75	496686.1	7644869.2	165.3	-70	180	Yandan	RSM	
YNDC361 YNDC362	RC RC	48	496762.5 496761.1	7645143.6	177.6 176.2	-70	180	Yandan	RSM	
YNDC362 YNDC363	RC	50 63	496761.1	7645166.3 7645193.3	176.2	-70 -70	180 180	Yandan Yandan	RSM RSM	
TRUC505	ne	03		1040100.0	100.0	-70	100	ranuali	NJIW	


YNDC364	RC	96	496731.3	7645142.3	170.7	-70	180	Yandan	RSM	
YNDC365	RC	69	496686.1	7644820.1	167.3	-70	180	Yandan	RSM	
YNDC366	RC	100	496809.3	7645197.8	173.6	-70	180	Yandan	RSM	
YNDC367	RC	80	496837.6	7645243.8	174.7	-70	180	Yandan	RSM	
YNDC368	RC	100	496759.7	7645190.3	172.4	-70	180	Yandan	RSM	
YNDC369	RC	62	496722.8	7645170.9	168.6	-70	180	Yandan	RSM	
YNDD370	DD	147.1	497310.9	7644643.4	175.8	-70	360	Yandan	WMC	
YNDD372	DD	283	496761.2	7644839.9	165.2	-52	360	Yandan	WMC	
YNDC373	RC	57	497360.5	7644643.5	174.7	-70	360	Yandan	RSM	
YNDC374	RC	48	497361.9	7644668.7	179.3	-70	360	Yandan	RSM	
YNDC375	RC	62	497337.6	7644695.1	185.6	-70	360	Yandan	RSM	
YNDC376	RC	79	497364.8	7644720.4	185.0	-70	360	Yandan	RSM	
YNDC377	RC	88	497361.9	7644743.8	184.5	-70	360	Yandan	RSM	
YNDC378	RC	65	497361.9	7644768.5	184.5	-70	360	Yandan	RSM	
YNDC379	RC	96	497363.3	7644794.1	178.7	-70	360		RSM	
								Yandan		
YNDC380	RC	54	497310.9	7644617.7	171.4	-70	360	Yandan	RSM	
YNDC381	RC	51	497315.2	7644667.7	181.3	-70	360	Yandan	RSM	
YNDC382	RC	64	497312.3	7644718.9	191.8	-70	360	Yandan	RSM	
YNDC383	RC	43	497310.9	7644749.7	190.4	-68	360	Yandan	RSM	
YNDC384	RC	48	497259.9	7644619	170.1	-70	360	Yandan	RSM	
YNDC385	RC	42	497259.9	7644644	171.6	-70	360	Yandan	RSM	
YNDC386	RC	25	497259.9	7644671.1	174.5	-70	360	Yandan	RSM	
YNDC387	RC	42	497259.9	7644693.5	177.7	-70	360	Yandan	RSM	
YNDC388	RC	45	497261.3	7644717.5	181.5	-70	360	Yandan	RSM	
YNDC389	RC	50	497261.3	7644743.5	182.7	-70	360	Yandan	RSM	
YNDC390	RC	49	497261.3	7644796.2	179.2	-70	360	Yandan	RSM	
YNDC391	RC	51	497259.9	7644819.2	176.1	-70	360	Yandan	RSM	
YNDC392	RC	50	497410.1	7644642.1	171.7	-70	360	Yandan	RSM	
YNDC393	RC	47	497411.5	7644669.4	174.7	-70	360	Yandan	RSM	
YNDC394	RC	47	497411.5	7644686	175.7	-70	360	Yandan	RSM	
YNDC395	RC	50	497410.1	7644719.5	177.1	-70	360	Yandan	RSM	
YNDC396	RC	50	497411.5	7644744.4	176.6	-70	360	Yandan	RSM	
YNDC399	RC	50	497459.7	7644643.8	168.9	-70	360	Yandan	RSM	
YNDC400	RC	50	497459.7	7644668.7	170.7	-67	360	Yandan	RSM	
YNDC401	RC	50	497461.1	7644694.1	171.7	-70	360	Yandan	RSM	
YNDC404	RC	50	497461.1	7644769.4	172.4	-70	360	Yandan	RSM	
YNDC406	RC	50	497210.3	7644643.5	168.7	-70	360	Yandan	RSM	
YNDC408	RC	46	497210.3	7644694.4	170.8	-70	360	Yandan	RSM	
YNDC410	RC	47	497210.3	7644743.9	171.8	-70	360	Yandan	RSM	
YNDC411	RC	50	497210.3	7644770.2	172.8	-70	360	Yandan	RSM	
YNDC412	RC	50	497208.9	7644794.2	172.7	-70	360	Yandan	RSM	
YNDC413	RC	50	497208.9	7644819.4	171.9	-70	360	Yandan	RSM	
YNDC415	RC	54	497285.4	7644690.4	181.7	-70	360	Yandan	RSM	
YNDC416	RC	66	497310.9	7644663.4	180	-80	360	Yandan	RSM	
YNDC417	RC	78	497285.4	7644648.8	175.2	-70	360	Yandan	RSM	
YNDC418	RC	60	497335	7644628.8	174.4	-70	360	Yandan	RSM	
YNDC419	RC	47	497360.5	7644620.3	172.8	-70	360	Yandan	RSM	
YNDC420	RC	48	497386	7644618.9	171.9	-70	360	Yandan	RSM	
YNDC421	RC	45	497284	7644670	177.1	-70	360	Yandan	RSM	
YNDC422	RC	48	497333.6	7644649.6	178.3	-70	360	Yandan	RSM	
YNDC423	RC	48	497384.6	7644729.4	182.1	-70	360	Yandan	RSM	
YNDC424	RC	54	497384.6	7644708.7	181.8	-70	360	Yandan	RSM	
YNDC425	RC	48	497384.6	7644689.5	181.5	-70	360	Yandan	RSM	
YNDC426	RC	37	497384.6	7644664.5	177.9	-70	360	Yandan	RSM	
YNDC427	RC	36	497384.6	7644643.7	174.6	-70	360	Yandan	RSM	
YNDC428	RC	48	497335	7644716	192.5	-75	360	Yandan	RSM	
YNDC429	RC	51	497313.8	7644704.9	189.2	-70	180	Yandan	RSM	
YNDC430	RC	52	497359.1	7644706.9	187.3	-70	360	Yandan	RSM	
YNDC431	RC	48	497337.8	7644691.3	187.6	-70	360	Yandan	RSM	
YNDC432	RC	48	497361.9	7644679.6	182.4	-70	360	Yandan	RSM	
YNDC433	RC	48	497336.4	7644671.8	183	-70	360	Yandan	RSM	
YNDC434	RC	60	497658.1	7644531.8	173.4	-60	325	Yandan	RSM	
YNDC435	RC	54	497697.8	7644484.3	178.3	-60	325	Yandan	RSM	
YNDC436	RC	66	497728.9	7644446.7	182.9	-60	325	Yandan	RSM	
YNDC437	RC	78	497767.2	7644402.2	174.6	-60	325	Yandan	RSM	
YNDC438	RC	60	497806.9	7644356.5	169.9	-60	325	Yandan	RSM	
	RC	100	497369	7645393	180	-50	140	Yandan NE	DGO	15/08/2010
YNRC001										

YNRC003	RC	100	497407	7645344	183	-50	140	Yandan NE	DGO	16/08/2010
YNRC004	RC	150	497182	7645226	180	-50	139	Yandan NE	DGO	19/08/2010
YNRC005	RC	100	497108	7645331	176	-50	139	Yandan NE	DGO	20/08/2010
YYC001	RC	28	498137	7645317	211	-90	360	Yan Heap		6/10/2004
YYC002	RC	28	498198	7645328	211	-90	360	Yan Heap		6/10/2004
YYC003	RC	28	498250	7645273	211	-90	360	Yan Heap		6/10/2004
YYC004	RC	28	498178	7645281	211	-90	360	Yan Heap		6/10/2004
YYC005	RC	28	498160	7645238	211.5	-90	360	Yan Heap		6/10/2004
YYC006	RC	28	498137	7645190	212	-90	360	Yan Heap		6/10/2004
YYC007	RC	28	498100	7645213	212.5	-90	360	Yan Heap		6/10/2004
YYC008	RC	28	498116	7645261	212	-90	360	Yan Heap		6/10/2004
YYC009	RC	28	498074	7645283	211.5	-90	360	Yan Heap		6/10/2004
YYC010	RC	28	498053	7645241	212	-90	360	Yan Heap		6/10/2004
YYC011	RC	28	498025	7645196	212	-90	360	Yan Heap		6/10/2004
YYC012	RC	24	497988	7645223	211.5	-90	360	Yan Heap		6/10/2004
YYC013	RC	24	498011	7645269	211	-90	360	Yan Heap		6/10/2004
YYC014	RC	16	497950	7645184	202	-90	360	Yan Heap		6/10/2004
YYC015	RC	16	497975	7645129	202	-90	360	Yan Heap		6/10/2004
YYC016	RC	16	497941	7645086	201	-90	360	Yan Heap		6/10/2004
YYC017	RC	18	497912	7645042	201	-90	360	Yan Heap		6/10/2004
YYC018	RC	20	498072	7645324	207	-90	360	Yan Heap		6/10/2004
YYC019	RC	20	498317	7645192	202.5	-90	360	Yan Heap		6/10/2004
YYC020	RC	20	498283	7645157	202	-90	360	Yan Heap		6/10/2004
YYC021	RC	20	498242	7645128	202	-90	360	Yan Heap		6/10/2004
YYC022	RC	20	498196	7645111	202	-90	360	Yan Heap		6/10/2004
YYC023	RC	20	498186	7645149	202	-90	360	Yan Heap		6/10/2004
YYC024	RC	20	498225	7645173	202	-90	360	Yan Heap		6/10/2004
YYC025	RC	20	498257	7645198	202	-90	360	Yan Heap		6/10/2004
YYC026	RC	20	498287	7645224	202	-90	360	Yan Heap		6/10/2004
MHCS001	NR	280	497512	7644713	170	0	139	YPIT	RSM	14/02/1998
MHCS002	NR	405	497413	7644553	170	0	141	YPIT	RSM	24/06/1998
YRC001	RC	208	496643.5	7645390.6	170	-60	90		NM	10/08/2001
YRC002	RC	160	496617.4	7645645.4	170	-55	90		NM	12/08/2001
YRC003	RC	160	496199	7645344.5	170	-60	90		NM	13/08/2001
YRC004	RC	209	496233.5	7645447.5	170	-60	90		NM	15/08/2001
YRC005	RC	184	496832.7	7646195.7	170	-60	90		NM	15/09/2001
YRC006	RC	220	495911.1	7646123.5	170	-60	90		NM	17/09/2001
YRC007	RC	151	495802.1	7646098.1	170	-62	90		NM	18/09/2001
YRC008	RC	208	495863.6	7645560	170	-55	90		NM	21/09/2001
YRC009	RC	40	496370	7645936	170	-55	90		NM	22/09/2001
YRC010	RC	172	496361	7645936	170	-60	90		NM	23/09/2001
YRC011	RC	184	495999.5	7645086	170	-60	180		NM	25/09/2001
YRC012	RC	160	496082	7644756.5	170	-60	90		NM	26/09/2001
YRC013	RC	115	496815	7646050	170	-60	270		NM	27/09/2001
YRC014	RC	106	496619.5	7646749	170	-55	90		NM	3/10/2001

Figure 8: Yandan Drill Collar Location Plan

APPENDIX 3 – GBM MINERAL RESOURCE ESTIMATE FOR MOUNT COOLON GOLD PROJECT

Mount Coolon Gold Project Resources

The Mount Coolon Project is located in the Drummond Basin in Queensland. Tenements and resources are owned by 100% owned subsidiary, Mount Coolon Gold Mines Pty. Ltd.

Project	Location				Reso	urce Cat	egory					Total		Cut-off
		I	Measure	d		Indicated		Inferred						
		000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	
Koala	Open Pit				670	2.6	55,100	440	1.9	26,700	1,120	2.3	81,800	0.4
	Undergro	und Exten	sion		50	3.2	5,300	260	4	34,400	320	3.9	39,700	2.0
	Tailings	114	1.6	6,200	9	1.6	400				124	1.6	6,600	1
	Total	114	1.7	6,200	729	2.6	60,800	700	2.7	61,100	1,563	2.5	128,100	
Eugenia	Oxide				885	1.1	32,400	597	1.0	19,300	1,482	1.1	51,700	0.4
	Sulphide				905	1.2	33,500	1,042	1.2	38,900	1,947	1.2	72,400	0.4
	Total				1,790	1.1	65,900	1,639	1.1	58,200	3,430	1.1	124,100	
Glen Eva	Open Pit				1,070	1.6	55,200	580	1.2	23,100	1,660	1.5	78,300	0.4
То	tal	114	0.0	6,200	3,590	1.6	181,900	2,919	1.5	142,400	6,653	1.5	330,500	

Table: November 2017 Resource Summary for the MCGP. Please note rounding (1,000's tonnes, 100's ounces, 0.1 g/t) may cause minor variations to totals. For full details please refer to ASX release dated the 4th of December 2017.

GBM confirms that it is not aware of any new data or information that materially affects the information disclosed in this presentation and previously released by GBM in relation to Mineral Resource estimates on its tenure. All material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

APPENDIX 4: YANDAN JORC CODE 2012 EDITION - TABLE 1

a. Section 1 Sampling Techniques and DATA

(Criteria in this section apply to all succeeding sections)

Criteria	Commentary								
Sampling techniques	 completed predominantly by WMC, Normandy (NM), Ross Mining (RSM), Straits Resources (SRL) and Drummond Gold (DGO). Reverse Circulation (RC) drilling and diamond drilling (DD) are the main sampling methods with drilling completed in multiple phases, amounting to 569 drill holes for a total of 60,688 m and 46,815 samples across the four prospects, Yandan, Yandan NE, East Hill and South Hill. 14,976 samples are form East hill prospect and 6019 samples are from South Hill Prospect. The dominant drill hole type is RC drilling with 398 holes for 39,446 m but with a substantial number of DD holes (including RC precollars) i.e. 68 holes for 15,579.2 m. The project area also has 180 RAB holes for 3,910 metres not used in the resource estimate. RC drilling was used to obtain 1m samples which were riffle split to give a 3-8 kg which was then pulverised to produce a 30g or 50g charge for gold fire assay analysis with an AAS finish. DD was used to obtain core samples which were marked up for sampling by geologists, generally at 1m intervals, but under geological control. Samples were sawn in half using a diamond blade saw to give 3-5kg sub-samples which were pulverised to produce a 30g or 50g charge for gold fire assay analysis with an AAS finish. All samples were logged; virtually all drill hole intervals were sampled and analysed. Documentation for sampling and analytical procedures is available for the SRL work only, although H&SC is familiar with the RSM work completed around this time in the general area, but there is no documentation for sampling and analytical procedures for WMC or DGO. It is understood this work with have been completed to industry standards. Sampling and assaying are assumed to be to industry standard practice for the time. Sampling and assaying techniques are considered appropriate for the deposit type at the time of the analysis. 								
Drilling techniques		Irilling at the Ya	andan, Yanda Hole_T	an NE, East Hill ar	nd South Hill by comp	any are included			
		у.	уре	e_ID	pth				
		WMC	DD	46	7859.8				
		RSM	NR	2	685				
		RSM	PERC	86	1701				
		RSM	RC	349	26389				
		NM	NR	14	2277				
		SRL	DD	12	4150.7				
		SRL	RC	35	11846.8				
		DGO	RC	7	880				
		DGO	RCD	11	4568.7				
		UNK	RC	7	330				
		Total		569	60,688				
	 (WMC), Norma Eagle Drilling futhe Reverse Cit Sample recove The SRL drilling a 5" or 5½" fac were drilled us measured by b 	cumentation fo andy (NM), Ros rom Charters T roulation drillin ry seems to be g was complete e sampling har ing a 650 rig to oth a simple sp	or details of t s Mining (RS owers. Stanc g. It is not kr sufficient th ed in 4 phase mmer bit wit o give NQ2 co bear techniqu	M) and Drummod lard face samplin nown whether tri ough for assay. s and utilised a U h a cyclone-mour pre with some top	ques for the Western nd Gold (DGO) drilling g hammers would ha ple tube was used for DR650 rig with RC pro nted sample splitter (o of hole HQ core. Ori pre orientation tool.	g was completed by ve been used for diamond drilling. ecollars drilled with 1:7). Diamond holes			

Criteria	Commentary
Drill commun	• Recovery data was available for 22 RC holes, 10 DD holes and 5 pre-collared Diamond holes at the
Drill sample	East Hill and South Hill deposits.
recovery	 NQ3 triple tube was used for most of the DD drilling to maximise recovery.
	Recovery of core is high, averaging 93.7 for East Hill drilling and 87.9 for South Hill drilling.
Logging	• 100% of RC chips were logged using a qualitive system logged by a geologist with sufficient
	experience.
	• 100% of core logged for geological, mineralogical and geotechnical purposes. Core logging was
	conducted in the site core yard, logged by a geologist with sufficient experience using a qualitive system.
	 A lack of available documentation has meant it is difficult to comment on the logging systems that
	were used. However, from the drill hole database the logging appears to be qualitative based on a
	series of codes for various geological aspects eg lithology, alteration etc.
Cub consuling	• SRL and DGO sampled 1m intervals through the mineralized zones using RC drill holes and Diamon
Sub-sampling techniques	holes, with the latter commonly guided by geological contacts. Sample intervals include waste
and sample	sampling either side of the mineralization.
preparation	Little information is available to evaluate data quality of the RSM RC drilling, except that a riffle aplithenung used to generate the 1m second se
preparation	 splitter was used to generate the 1m samples (sample weight unknown). For the RSM drilling the 1m RC returns were sub-sampled using a 1:3 Jones splitter yielding a 1-3kg
	sub-sample, samples were passed through the splitter several times. The later drilling (SRL, DGO)
	used a 1:7 Jones riffle splitter either rig-mounted or free-standing to give an approximate 3kg sub-
	sample, on either 1m (dominant) or 2m composite intervals.
	• All core was pre-marked for sampling by geologists. The core samples were sawn in half using a
	diamond-blade saw with the same half of the core selected for sampling for the length of the hole.
	• RC drilling did not involve water injection. Ground conditions were generally dry, with no mention
	of any groundwater in flows.
	 No sample prep detail is available for the WMC. SPL: Phase 1 of the PC drilling assay had samples composited at 2m intervals from the smaller split.
	 SRL: Phase 1 of the RC drilling assay had samples composited at 2m intervals from the smaller split 1m sample and further split by external riffle splitter down to 2-3kg if necessary. A duplicate
	sample by hollow spear from the larger split plastic bag sample was taken approximately every
	60m for QA/QC purposes. Representative drilling rock chips were collected at 1m intervals into
	plastic chip trays. Phase 3-4 RC drilling assay samples were collected at 4m intervals by hollow
	spear from individual larger 1m sample split. A duplicate sample was taken approximately every
	80m for QA/QC purposes. The smaller split 1m calico bag samples were retained for assaying later
	if the 4m composite sample was geochemically significant (Au>0.4g/t). Representative drill chips
	were collected at 1m intervals into plastic chip trays. Core was 100% sampled on a geological basis, generally at 1m intervals but with a minimum of 0.3m and maximum of 1.3m per sample. Half-core
	samples, cut by diamond saw where possible, or otherwise spoon sampled in highly weathered
	core. Uninteresting samples from a mineralisation perspective were composited into
	approximately 4m samples to reduce costs (undertaken by the laboratory after crushing and
	pulverisation of individual samples). The remaining half core is stored at the Yandan core yard (also
	RC chip trays).
	• The Ross Mining samples were dried at 150°C for 12 hours and then either pulverised using an LM5
	to 85% passing 75 micron (Townsville lab) or sub-sampled (riffle split) and pulverised using an LM3 to 85% passing 75 microns (minesite lab), both producing a 200g scoop sample for analysis.
	 All laboratories were certified commercial laboratories working to best practices for the times.
	 All sample preparation, sample sizes and analytical methods are assumed to be appropriate for the
	time.
Quality of	WMC: No details available
Quality of	RSM: No details available
assay data	NM: no details available
and	SRL: Sample assaying was undertaken by ALS Chemex in Townsville for Au and ALS Chemex in
laboratory	Brisbane for other multi-element analysis with the following methods used (no sample prep details
tests	available):
	 Au-AA25 is 30g fusion with AAS determination (gravimetric determination for high grade Au samples).
	 ME-ICP41 is 0.5g aqua regia digestion with ICPAES determination.
	 ME-MS42 is 0.5g aqua regia digestion with ICPMS determination.
	 ME-ICP61 is 0.5g multi-acid digestion with ICPAES determination.
	DGO: No details available
	Sample analysis was completed at commercially run laboratories.

Criteria	Commentary
	• Details of the sample analysis method are available for the SRL drilling only.
	• All samples were analysed by fire assay of a 30g or 50g charge with an AAS finish.
	No QAQC data was available for analysis by MA.
	• The QAQC programme for the drilling is considered as industry normal practice for the time, but
	would potentially be considered today to be insufficient. QAQC sample data is available for the
	Straits drilling in PDF electronic format. GBM plans to transfer this data to an electronic data base
	for analyses prior to an upgrade in the resource category to indicated.
	Fire assay for gold is considered a total analytical technique.
Verification	No independent verification has been undertaken. There are no distributed are available to be a seclarity.
of sampling	There are no details of any specific twin hole analysis. There is a non-state data set of the set of
and assaying	There is no procedural documentation available for the primary data, data entry procedures, data unreficient and data storage (physical and electronic) protocols
	 verification and data storage (physical and electronic) protocols. Available data for this work comprises an Access drill hole database and a suite of geological
	interpretations maintained by DGO up to 2011. No work has occurred on the project since 2011.
	 All current data has been partially checked by MA for data entry or other inconsistencies via its
	Access database. This includes simple error checking for duplicate entries, incorrect hole depths
	and overlapping samples. Visual checks have been made for excessive hole deviation.
	 No adjustments were made to assay data except for replacement of assays with below lower
	detection limits values with half lower detection limit values.
	No documentation on collar survey techniques is available. Most of the drilling is pre-hand held
Location of	GPS so is likely to either professionally surveyed or hand measured using a tape and compass. The
data points	collar locations for the more recent DGO drilling is likely to be via hand held GPS.
	• No documentation on downhole surveys was supplied. A review of the drill hole database indicates
	a lack of downhole surveys for the RC drilling (which was often industry practice at the time).
	Downhole surveys for the DD drilling appear to be on nominal 50m or 30m (DGO) intervals. It is
	most likely that the survey equipment was an single shot Eastman style camera which was a
	standard industry practice at the time except for the DGO drilling which is likely to a single shot
	digital measuring system.
	Collar coordinates and geological interpretations are in the MGA94 Zone 55 grid projection.
	• A topographic surface was created by H&S was supplied by GBM; the surface grid (40m Nodes) was made from the drill hole collar elevations. The 3D surfaces for the Yandan, East Hill and South
	Hill Pit excavations were provided by GBM.
	 Topographic control is considered adequate given the relatively subdued relief in the resource
	area.
	 Hole spacing is generally on a 25m by 20m grid extending to larger and irregular spacing with
Data spacing	depth.
and	 Downhole sampling interval is 1m for the RC drilling and is predominantly 1m for the DD, but can
distribution	range from 0.1 to 3m in core as a result of geological control.
	• Sample assay data was composited to 2m intervals for the grade interpolation in the low-grade
	Halos of East Hill. Within the interpreted high-grade veins of East Hill samples were composited to
	1 m intervals. South Hill drill hole samples were composited to 1 m intervals.
	Holes are generally angled steep to the south for the upper reaches of the main East Hill
	mineralisation but then they are angled 60o to 70o to the north for the deeper sections of the
	mineralisation; occasionally holes have been oriented in the opposite direction to act as scissor
	holes. For the South Pit the holes are generally angled 70o to the north with the occasional hole
	angled 700 to the south
	 Drilling depth is up 500m below surface with collar elevations range from 170 to 190mRL. Drilling is generally at high angles to the gold mineralisation.
Orientation	 Drilling is generally at high angles to the gold mineralisation. There are however some drill holes that were drilled parallel to higher grade structural zones and
of data in	 There are nowever some drill noise that were drilled parallel to higher grade structural zones and are at risk of adding a bias to the sampling data. No quantification of this potential bias has been
relation to	undertaken
geological	 The full extents to mineralisation may not necessarily have been fully established
structure	
	There is no documentation for sample security
Sample	
security	
Audits or	No Validation of previous drill data sets has been undertaken.
reviews	

b. Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

East Hill deposit occurs 1km east of the historic Yandan mine which is located at 21o 20' south, to 57' east, within the Charters Towers, Bowen and Clermont mining districts,
o 57' east, within the Charters Towers. Bowen and Clermont mining districts.
t Hill lies on mine lease ML 1095 covering approximately 13.3 km2 and is located 40km west of
Mt Coolon townsite and 155 km southeast of Charters Towers in north Queensland.
1095 and ML 1096 mining leases for Yandan project expire 30 June 2021. Straits Gold Pty Ltd is
registered holder of ML 1095 and 1096
M in process of acquiring 100% of Straits Gold Limited (SRL), final agreements pending and are ject to GBM shareholder approval at 30th Nov 2020 (AGM). Settlement expected by 14th Dec
0.
V is in the process of renewing the mining leases, submission is required by Dec 31st 2020.
Yandan and East Hill deposits were initially discovered by WMC in 1986. This included
loration drilling which defined Mineral Resources at East Hill and Yandan.
nership of Yandan and East Hill passed to RSM in 1992 who proceeded to mine Yandan from 1993
.996 with some minor mining of East Hill including a portion of the South Hill deposit. RSM
lertook extensive exploration drilling programmes.
mandy Mining had an option over the Yandan area for exploration in 2000. They completed
ted work.
burton Minerals acquired the Yandan property in about 2002 and completed very limited work
its Resource (SRL) entered into a joint venture with Ashburton that eventually led to the 100%
uisition of Yandan and East Hill. From 2004 to 2006 a substantial drilling programme was
npleted looking for higher grade zones at depth underneath East Hill (and Yandan). Straits
ources completed a total of 31 drill holes for 11,292.0 meters into the Yandan East project area.
D acquired the property and completed a drilling programme in 2008-2009 with the
nouncement of maiden resource estimates for East Hill in 2010 under the 2004 JORC Code &
delines. DGO completed 11 drill holes for 3925.1 meters. Around 7 of these holes did either not
ch target depth or were drilled outside the resource at Yandan East. m field studies and petrographic work the East Hill hydrothermal system was interpreted (Leach,
(b) to be a typical high level low sulphidation epithermal system. An alteration zonation from a
tral silica-adularia core outward to clay alteration zones was identified, as well as later
rprinting alterations due to evolution of the hydrothermal system.
South Hill and East Hill areas covers a portion of the western Drummond Basin including a part
ts eastern contact with the western margin of the Anakie Inlier. The major stratigraphic units
hin the tenement comprise basement Anakie Inlier Les Jumelles metasediments, which are
onformably overlain by/faulted against the Middle Devonian Ukalunda Beds, which in turn are
onformably overlain by/faulted against the St Anns Formation of the Middle Devonian to Early
boniferous Drummond Basin Sequence. Western parts of the tenement have been
onformably overlain by/faulted against mainly fluvial deposits of the Scartwater Formation and
unt Hall Formation, both part of the sag-phase Cycle 2 depositional event within the Drummond
in Sequence (Olgers, 1972). Lateritised Tertiary Suttor Formation sediments and Quaternary vium cover large areas of the Drummond Basin Sequence and the Anakie Inlier.
he tenement area, the units of the Drummond Basin Sequence have been mapped as the St Anns
mation. The St Anns Formation has been divided into four informal subdivisions – a lower, middle
l upper unit and the overlying Llanarth Member (Hancock and Mason, 1992). The formation
prises a series of volcanics and volcanoclastics consisting of fine tuff, acid to intermediate flows,
osic and tuffaceous arenites, and minor limestones. The units within the sequence are difficult to
p and correlate due to the extreme variation in unit geometry, facies changes, non-depositional
onformities, abrupt provenance changes and coeval tectonism.
elopment of the Drummond Basin is, in part, coeval with Middle Carboniferous to Early Permian
lic to intermediate igneous intrusions throughout the region. Plutonic intrusions include
nodiorite, granite, quartz-feldspar porphyry, quartz-tourmaline breccia, monzonite and diorite
tton et al., 1991). Hypabyssal dykes and sills include andesite, trachyandesite, rhyodacite and
olite porphyries.
rge portion of the project area is covered by Tertiary and Quaternary sediments. In the south and
t, the cover is dominantly Tertiary Suttor Formation comprising lateritised sandstone, mudstone,
istone, oil shale, diatomite and carbonaceous claystone (Hutton et al., 1991). Lateritisation has ulted in the Suttor Formation forming low-lying mesa plateaus and ridges along palaeo-channels

Criteria	Commentary
Criteria	 Commentary Quaternary alluvial channels draining out to flood plains. Structural and mineralisation history is summarised as follows: Basin inversion at end of Drummond Basin cycle 1 deposition results in dextral and reverse faulting on northeast listric faults with the formation of northeast anticlinal fault warps and steep east tension structures. At East Hill the proximity of the basement basin margin accentuates the deformation. Hydrothermal fluids generated by an unknown heat source upflow predominantly in east structures, concentrated at the intersection with northeast faults. Alteration of the host rock occurs above the boiling zone in a zonation from silica-adularia outward to clays. At East Hill massive silica veining and low grade Au mineralisation, is deposited from upwelling fluids in tension fracturing in approximately 070 and 110 orientations and the alteration zonation is overprinted variably by silica-illite. Silica-pyrite veining. As and Sb rich and low grade Au mineralisation, is deposited by hydrothermal brecciation at East Hill and porosity dissolution infill at Yandan Main Pit and South Pit. Late in the deformation at East Hill, crustiform banded veining with high grade Au mineralisation, is deposited in approximately 110 striking tension fractures by upwelling fluid boiling and interspersed episodes of mixing with recharge cool carbonate fluid. Hydrothermal system waning results in a kaolinite-siderite alteration overprint by downdrawn carbonate fluids. Post-mineralisation deformation results in normal faulting on northeast listric structures and sinistral faulting on steep east pit Fault and sub-parallel hanging wall faults A series of NNW trending, east dipping faults east of the Yandan East Fault – the West Wall and Andesite Margin Faults. The ENE trending sub-paralle faults A series of nNW trending, east dipping faults east of the Yandan East Fault – the West Wall and An
	 The adultard effect of the Coarse Andesite adjacent to the pit The petrographic work also identified the occurrence of Au in high grade crustiform banded veins at two sites. Silica-adularia band hosted Au is interpreted to be deposited by hot upwelling fluid boiling. Silica-illite-carbonate-sulphide band hosted Au is interpreted to be deposited by hot upwelling fluid mixing with cool carbonate recharge fluid. Gold occurred as fine-grained electrum where observed in petrography. Average grain size is
Drill hole	 approximately 20um and fineness approximately 700. Exploration results not being reported.
Information Data aggregation methods	Exploration results not being reported.
Relationship between mineralisatio n widths and intercept lengths	Exploration results not being reported.
Diagrams	Exploration results not being reported.
Balanced reporting	Exploration results not being reported.
Other substantive exploration data	Exploration results not being reported.
Further work	 There is scope for some additional peripheral exploration in order to incrementally add to the sulphide resource Preferentially oriented drilling may better define the geometry of the deeper higher grade gold mineralisation.

Criteria	Commentary
	Validation drilling of historic exploration activities, twin holes and quarter core duplicates
	Data entry of QAQC samples into an electronic database to facilitate analysis.

c. Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	Commentary
Database integrity	 MA was provided with an export of the current GBM drill hole database in MS Access format. The database contained tables for Collar details and metadata, downhole surveys, assays, lithology, alteration, core recoveries, veins, minerals and oriented structures. MS Access queries were used to perform basic validation checks, and holes were then loaded into Surpac for a second round of validation, hole lengths, sample lengths, down hole survey errors.
Site visits	 Ian Taylor (AusIMM(CP)) of Mining Associates visited the property in July of 2018 and again in August 2019.Field exposures and numerous drill holes collars were examined during this visit.
Geological interpretation	 Zones of broad massive silica alteration and zones massive silica-pyrite with low grade Au mineralisation were grouped as a low grade domain above a nominal 0.3 g/t. Higher grade domains consisting of crustiform banded silica-adularia-calcite veins within logged buddingtonite alteration above 2.0 g/t were digitised. The high-grade veins are interpreted to strike 070° and dip moderately (~50°) to the south-south east A similar orientation to the interpreted "feeder zone" at Yandan pit (Gilbert 1999). North South cross sections were digitised on 25 m intervals Interpreting specific high grade zones restricts the influence of the high grade assays. These zones are not diluted with the background anomalous 0.3 g/t mineralisation. The interpreted zones do carry internal dilution below 2.0 g/t. Mineralisation is best defined by a combination of geological interpretation and the gold assays. The data in the supplied drill hole database is limited and in parts is sub-optimal eg oxidation levels. The base of mineralisation is defined by a fault, interpreted as a listric fault.
Dimensions	 Mineralisation is largely constrained within a fault block approximately 250 m in strike. The low grade mineralisation is identified further west providing an overall strike length of 430 m and a width of 275 m, the higher grade veins strike approximately 200 m and are generally narrow 5 m wide with ra intersections up to 20m wide. Mineralisation occurs from the surface to the identified basement listric fault 350 m below the surface
Estimation and modelling techniques	 Estimation undertaken in Surpac 7.3. Experimental Variograms were generated in Supervisor and Surpac. Experimental Variograms were poorly formed, due to the grade distribution expected in a epithermal gold-silver deposits. Variogram sills were standardized to 1. Nuggets were generally moderate to low, ranging from 0.22 to 0.56, and the range of the variogram ranged from 50m to 115m. Geometric Anisotropy was adopted and ellipsoid ratios applied to reflect directional variograms. Estimation parameters: min samples 12 and max 20 first pass, minor veins min samples 5 and max 12 or 16. Required number of samples was relaxed for subsequent passes. Search distances were set a 60 m with anisotropy ratios of 1.67 and 2.5. search distances were doubled on 2nd pass and trebled on the 3rd pass. Informing composites were limited to 5 per drill hol for pass one and two, this restriction was removed for pass 3. 44% of blocks are estimated in pass 1, 51% in pass two and 5% in pass three. Silver is considered a by-product and has been estimated using the similar parameters as the gold estimate. No other variables were considered in this resource estimate. Block size was 25m x 10m x 10m (XYZ) which considers vein orientation and drill pattern. (approximately ½ the drill spacing) Sub-blocking of 1.25m x 3.125m x 1.25m was permitted allowing sufficient detail in the model to reflect the higher grade vein sets. Wireframes were constructed based on surface mapping, and drill hole intercepts greater than 0.3g/i Au and high grade greater than 2.0 g/t Au. Wireframes were used to constrain the individual veins estimates. High grade outliers data were capped. Identified erratic high grades were sidelined during the capping analysis, these samples were capped and used in the estimate. Au was capped by domain and capped

Criteria	Commentary
	 Global mean grades for estimated blocks and drill hole samples compared well. Ordinary krige estimates were compared to nearest neighbour and inverse distance estimates, to assess the impact of data clustering and semi-variograms. Swath plots along strike were constructed and showed a good correlation between sample data and estimated block grades, especially in well informed areas. No production data is available for the East Hill Pit, material mined was added to the Yandan Heap Leach.
Moisture	• Tonnages are based on dry tonnes. Density samples were measured using the immersion method to determine the dry density of the host rock.
Cut-off parameters	• The mineral resource is reported above 0.3 g/t within a conceptual pit shell to approximately 3300 m below the surface. The inferred resource considers, assumed mining methods, processing and administration costs, gold (AU\$2800) and recovery factors resulting in reasonable prospects for economic extraction. Silver grades are not considered in the economic cut-off at this early stage of the project.
Mining factors or assumptions	 Mineralisation is close to surface. GBM foresees mining via open pit and tank leach recovery.MA notes that this is a reasonable assumption but should not be regarded as rigorous at this stage of the project. The current mineral resource does not include any dilution or ore loss associated with practical mining constraints.
Metallurgical factors or assumptions	 Ross Mining mined the east hill pit and processed the material on the Yandan Heap Leach. Limited metallurgical work looking at refractory versus non-refractory mineralisation at East Hill. The project is considered a brown field exploration project and requires further metallurgical testing
Environmental factors or assumptions	 The project is located on an existing mining lease, approximately 0.5 km from the Yandan site. No specific issues beyond normal requirements for open pit mining in QLD
Bulk density	 11 pit samples and 355 immersion measurements from diamond core Density samples were measured using the immersion method to determine the dry density of the host rock A bulk density of 2.0 is assigned to the oxidised material and a bulk density of 2.65 is assigned to fresh material.
Classification	 Resource classification is based data quality, drill density, number of informing samples, kriging efficiency, average distance to informing samples and vein consistency (geological continuity). A moderate confidence (lack of QAQC) in the quality of the data justified the restriction of classification to inferred resources; the data quality will need further validation to improve confidence in the estimate. (eg: data entry of existing QAQC data and twining key drill holes) Geological continuity has been demonstrated at 50m grid spacing over the entire strike of East Hill project.
Audits or reviews	No external audits or reviews of the resource estimate have been carried out to date.
Discussion of relative accuracy/ confidence	 The resource estimate has been developed from "first principals" based on a review and re- interpretation of the geological controls and drill data using Surpac Software. The ordinary kriging result, due to the high level of smoothing, should only be regarded as a global estimate, and is suitable for strategic resource development .Should local estimates be required for detailed mine scheduling additional drilling and consideration of techniques such as Uniform conditioning or conditional simulation would be required. The resource classification reflects the accuracy of the block estimates. Production data is not available for the East Hill Pit or South Hill Pit which precludes comparison of the mineral resource with production data.