

31 MARCH 2025

ASX/MEDIA RELEASE

AERIS DELIVERS MATERIAL INCREASE IN COPPER AND GOLD AT CONSTELLATION

- Updated Mineral Resource estimate (MRE) for the Constellation deposit now totals 7.6 million tonnes at 2.01% Cu, 0.66g/t Au and 2.5g/t Ag, containing:
 - 153kt Cu metal, 161koz Au metal and 608koz Ag metal
 - Represents a 24% increase in contained copper metal and 29% increase in contained gold metal compared to the previous MRE¹
- Indicated Mineral Resource has grown substantially to 5.3Mt @ 1.75% Cu, 0.66g/t Au and 2.7g/t Ag, containing:
 - 94kt Cu metal, 112koz Au metal and 462koz Ag metal;
 - Represents a 279% increase in contained copper metal and 333% increase in contained gold metal compared to the previous MRE¹
- A substantial increase in Indicated Resource provides a strong foundation for potential conversion to Probable Ore Reserve²
- Open pit resource increased by 46% to 4.7Mt at 1.9% Cu and 0.6g/t Au³ with 3.2Mt⁴ of potential high-grade, primary/supergene mill feed
- The Constellation deposit remains open down-plunge, with strong potential for further growth

¹ Refer to ASX announcement "Constellation Mineral Resource Update" dated 18th August 2022.

² Conversion to Ore Reserve is subject to economic assessment and the application of appropriate modifying factors.

³ Comprises Indicated resource of 4.1Mt at 1.7% Cu, 0.6g/t Au and Inferred resource of 0.6Mt at 3.5% Cu, 0.5g/t Au.

⁴ Comprises Indicated resource of 2.6Mt at 2.3% Cu, 0.9g/t Au and Inferred resource of 0.6Mt at 3.5% Cu, 0.5g/t Au subject to conversion to an Ore Reserve.

Established Australian copper-gold producer and explorer, Aeris Resources Limited (ASX: AIS) (Aeris or the Company) is pleased to announce an updated Mineral Resource estimate (MRE) for the Constellation deposit, located within the Company's 100% owned Tritton tenement package in New South Wales.

Aeris' Executive Chairman, Andre Labuschagne, said, "This is a great outcome for Aeris and confirms our confidence in Constellation becoming a major ore source for Tritton in the near future. Focus will now turn to completing the feasibility study on the deposit and declaring a maiden Ore Reserve. With over 5Mt now in Indicated status, we have a strong foundation for this initial Ore Reserve."

"The updated MRE features a substantially larger open-pittable deposit, potentially transforming Tritton's future mine plan outlook. This expansion could support a significantly longer life open pit operation than initially anticipated, with potentially 3.2Mt of feed to the Tritton mill grading more than 2.5% copper and 0.8g/t gold⁵. The revised pit shell now incorporates the high-grade mineralisation associated with the complex subvertical zone, simplifying the mine plan."

"Finally, the strong gold grade of 0.66g/t materially improves the potential economics of an operation at Constellation, particularly given the current high gold price environment. Pleasingly, the latest metallurgical test works also shows very high gold recoveries into concentrate of 83% from primary ore, significantly greater than recoveries from historic Tritton deposits of around 50%⁶."

CONSTELLATION MINERAL RESOURCE ESTIMATE

An updated geological interpretation and Mineral Resource estimate (MRE) has been completed for the Constellation deposit, incorporating results from an additional 91 drill holes. The majority of these drill holes formed part of a resource definition program aimed at converting Inferred material to an Indicated classification. A small number of drill holes tested strike extensions beyond the previously reported MRE, below the -200mRL level.

The March 2025 MRE for the Constellation deposit totals 7.6 million tonnes at 2.01 percent copper, 0.66 gram per tonne gold, 2.5 gram per tonne silver for 153 thousand tonnes of copper metal, 161 thousand ounces of gold metal and 608 thousand ounces of silver metal (see Table 1).

⁵ Comprises Indicated resource of 2.6Mt at 2.3% Cu, 0.9g/t Au and Inferred resource of 0.6Mt at 3.5% Cu, 0.5g/t Au subject to conversion to an Ore Reserve.

⁶ Metallurgical recovery assumptions based on test work completed by Core Resources, who undertook testing across four oxide, two supergene and 2 primary composite samples. Refer to page 16 and Appendix E for further details.

This represents a material increase in the total reported Mineral Resource and Indicated material (see Table 2).

	MAR	CH 202	5 CON	STELLA1	FION MI	NERAL	RESOU	RCE		
Mining Method	Cu Mineralisation Type	Resource Category	Cut-off (\$/t) NSR	Tonnage (kt)	Cu (%)	Au (g/ł)	Ag (g/t)	Cu metal (kt)	Au metal (koz)	Ag meto (koz)
	Oxide	Indicated	\$18	1,500	0.6	0.2	0.9	9	9	46
OPEN PIT (OP)	Supergene/Primary	Indicated	\$59	2,600	2.3	0.9	3.5	60	73	294
(01)	Supergene/Primary	Inferred	\$59	600	3.5	0.5	3.1	20	9	55
		Indicated		4,100	1.7	0.6	2.6	69	82	341
Total (OP)	various	Inferred	v arious	600	3.5	0.5	3.1	20	9	55
		Total		4,700	1.9	0.6	2.6	88	91	396
	-									
		Indicated		1,200	2.1	0.8	3.1	25	31	121
Total (UG)	Primary	Inferred	\$108	1,700	2.3	0.7	1.6	40	39	92
		Total		2,900	2.2	0.7	2.3	65	69	212
		Indicated		5,300	1.8	0.7	2.7	94	112	462
UG)	various	Inferred	v arious	2,300	2.6	0.7	2.0	60	48	147
33)		Total		7,600	2.0	0.7	2.5	153	161	608

Table 1: March 2025 Constellation Mineral Resource^{7,8,9}.

Geological understanding of the Constellation deposit has advanced significantly, driven by closely spaced infill drilling and supported by detailed sectional interpretations across the deposit. Importantly, the improved geological interpretation, together with the additional drill hole data, has not resulted in material changes to the modelled copper domains used for estimation.

The March 2025 Mineral Resource Estimate incorporates updated economic parameters and is reported using net smelter return (NSR) cut-offs, which vary depending on the mining method (open pit or underground) and processing route (heap leach or flotation). Metal price assumptions applied include a copper price of USD \$10,337/t, gold at USD \$2,797/oz, and silver at USD \$33.67/oz, with an AUD:USD exchange rate of 0.682.

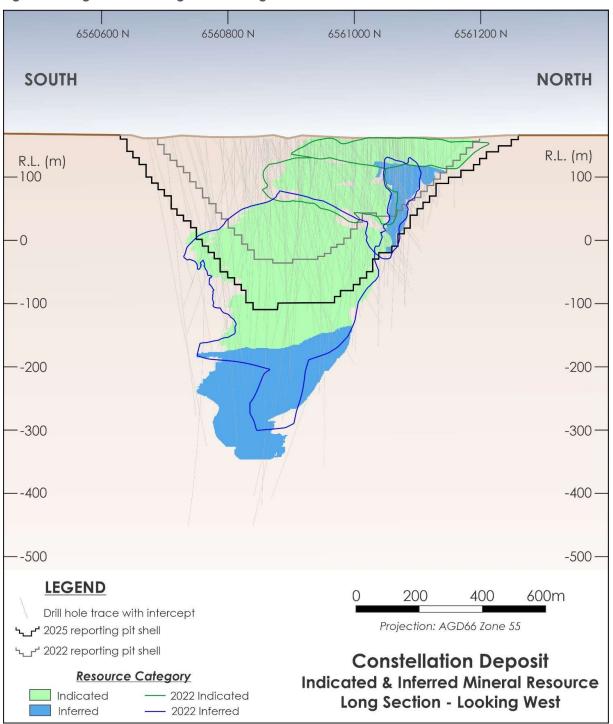
A significant copper sequential assay program has been completed across the Constellation deposit, encompassing oxide, supergene (transitional) and the upper portion of fresh sulphide domains. The assay program was based on a 40m x 40m drill hole spacing that has led to the refinement of the spatial extent of copper

⁷ Open pittable Mineral Resource figures are reported within a constraining pit shell applying the following metal price and exchange rate assumptions: USD\$10,337/t Cu, USD\$2,797/oz Au, USD\$33.67/oz Ag and AUD:USD 0.682. Cut-off grade NSR of \$18/t for open pit oxide, \$59/t for open pit supergene/primary.

⁸ Underground Mineral Resource figures are reported at a \$108/t NSR cut-off.

⁹ Discrepancy in summation may occur due to rounding.

speciation domains, along with a better understanding of the internal copper speciation ratios within each domain.


A reporting pit shell was used to report a potential open-pit Mineral Resource. Copper oxide mineralisation was reported at a \$18/t net smelter return (NSR) cutoff. Supergene and primary copper sulphides are reported at a \$59/t NSR cut-off. An underground mineral resource was reported from stope optimisation (SO) shapes using a \$108/t NSR. The Mineral Resource has been constrained using pit optimisation and stope designs consistent with the JORC Code (2012) requirement for Reasonable Prospects of Eventual Economic Extraction (RPEEE).

The March 2025 MRE is classified as Indicated and Inferred, based on 264 drill holes. The Indicated Mineral Resource extends from near surface (~5m) to a depth of 330m below surface and includes oxide, supergene and primary sulphide mineralisation.

Indicated Mineral Resource is reported from areas with a drill density up to a nominal 40m x 40m spacing within the conceptual pit shell and underground SO shapes. The geological interpretation is consistent between drill sections, and grade continuity is well understood. Inferred Mineral Resource is based on a nominal drill spacing up to 80m (strike) x 100m (dip) where there is a sound conceptual understanding of the geological framework and grade distribution. Inferred material is primarily located in deeper, sparsely drilled portions of the deposit, beneath the Indicated Resource.

The Mineral Resource has been reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves 2012 (JORC Code). A summary of all assumptions used for reporting the Mineral Resource are included in the Appendices.

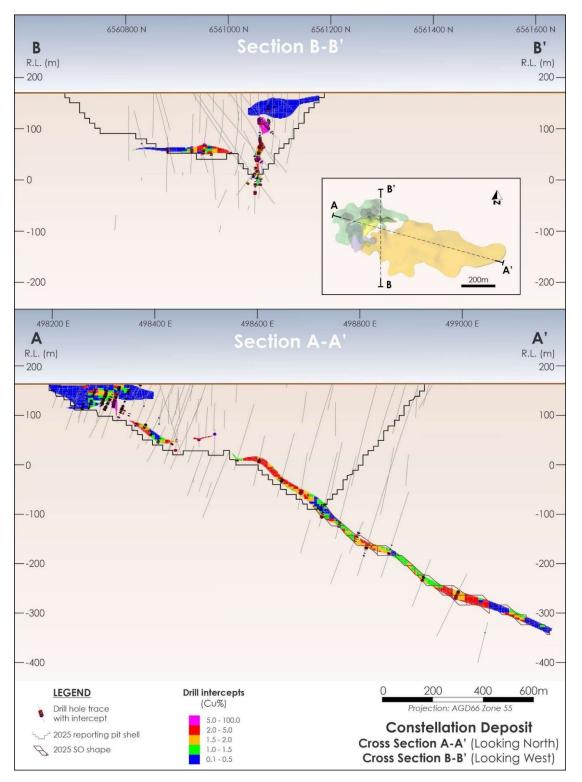


Figure 1 – Long section looking west showing the March 2025 Indicated and Inferred Mineral Resource

Figure 2 – Cross sections through the March 2025 MRE showing estimated Cu grades and informing drill holes. Note: Cross sections displaying drill hole data +/-20m from the section plane. The block model is reporting along the section plane.

CONSTELLATION MRE CHANGES

The updated 2025 Constellation MRE has resulted in a significant increase in both the total Mineral Resource and the Indicated category (see Table 2). Key changes reflect the completion of an extensive resource definition drilling program, revised economic inputs (including updated metal prices), changes to reporting cut-off methodology, and the inclusion of new mineralisation along strike (at depth) following a limited resource extension drill program.

The total Mineral Resource has increased by 15% in tonnage, 24% in contained copper metal, and 29% in contained gold metal (refer to Table 2). Key changes contributing to this update are shown in Figures 3 and 4 and include:

- 1.4Mt and 33kt Cu metal have been added from extensional drilling, primarily below the -200mRL level. These additions are shown under the Additions/Adjustments tab on the waterfall chart.
- A reduction of 0.5Mt and 8kt Cu metal resulting from applying \$108/t SO shapes for reporting underground Mineral Resource. This differs from the previous approach, which reported at a 0.9% Cu cut-off grade on a block by block basis. This is shown under the Spatial Constraint/Mining Factors tab.
- The remaining changes are minor and associated *Economic Factors* (NSR cut-off using updated metal price assumptions and recoverable copper from copper speciation results) and *Model Changes* (thickness and grade variations within the previously reported Mineral Resource).

The Indicated Mineral Resource has increased materially to 5.3Mt at 1.8% Cu, 0.7g/t Au and 2.7g/t Ag, containing 94 kt copper metal, 112koz gold metal and 462koz of silver metal. This represents a 133% increase in tonnage, 279% in contained copper metal, and 333% in contained gold metal compared to the August 2022 Indicated estimate¹⁰. Key changes contributing to this update are shown in Figures 5 and 6 and include:

- 1.9Mt and 42kt Cu metal have been added from reporting within a larger pit shell. The updated pit shell incorporates revised metal price assumptions (refer to Appendix E) and captures a greater proportion of the high-grade supergene and primary copper sulphide domains. This is shown under the Spatial Constraint/Mining Factors tab.
- A reduction of 0.3Mt and 1kt Cu metal resulted from applying recoverable copper from copper speciation assays, primarily impacting the copper oxide mineralisation.

¹⁰ Refer to ASX Announcement "Constellation Mineral Resource Update" dated 18th August 2022.

	MARC	CH 2025	5 CONS	TELLAT	ION MIN	IERAL P	RESOUR	CE	
	Resource Category	Cut-off (\$/t) NSR	Tonnage (kt)	Cu (%)	Au (g/t)	Ag (g/t)	Cu metal (kt)	Au metal (koz)	Ag metal (koz)
	Measured		-	-	•	5	-	2	5
TOTAL			4,100	1.7	0.6	2.6	69	82	341
(OP)	Inferred	∨arious	600	3.5	0.5	3.1	20	9	55
	Total		4,700	1.9	0.6	2.6	88	91	396
	Measured	¢100	-	-	-	-	-	-	-
TOTAL	Indicated		\$108	1,200	2.1	0.8	3.1	25	31
(UG)	Inferred	\$100	1,700	2.3	0.7	1.6	40	39	92
	Total		2,900	2.2	0.7	2.3	65	69	212
	Measured		-	-		1		-	-
OTAL (OP	Indicated	Various	5,300	1.8	0.7	2.7	94	112	462
& UG)	Inferred	various	2,300	2.6	0.7	2.0	60	48	147
	Total		7,600	2.0	0.7	2.5	153	161	608

Table 2: Constellation MRE comparison between the March 2025 August 2022 MRE 11,12,13,14.

	AUGU	IST 202	2 CONS	TELLAT	ION MI	NERALI	RESOUR	RCE	
	Resource Category	Cut-off (% Cu)	Tonnage (kt)	Cu (%)	Au (g/t)	Ag (g/t)	Cu metal (kt)	Au metal (koz)	Ag metal (koz)
16. 1	Measured			-	-	1	-	1	
TOTAL	Indicated	various	2,200	1.0	0.3	1.5	22	21	104
(OP)	Inferred	vanous	1,000	2.8	0.9	3.7	29	29	125
	Total		3,200	1.6	0.5	2.2	51	50	229
	Measured		-	-	-	-	-		
TOTAL	Indicated	0.90	100	2.1	1.1	4.8	3	5	20
(UG)	Inferred	0.70	3,300	2.1	0.7	3.5	70	70	371
	Total		3,500	2.1	0.7	3.5	72	75	392
	Measured		-			-		-	-
TOTAL (OP	Indicated		2,300	1.1	0.4	1.7	25	26	125
& UG)	Inferred	various	4,400	2.3	0.7	3.5	99	99	496
	Total		6,700	1.9	0.6	2.9	123	125	620

	NET CHANGE													
	Resource Category	Cut-off (% Cu)	Tonnage (kt)	Cu (%)	Au (g/t)	Ag (g/t)	Cu metal (kt)	Au metal (koz)	Ag metal (koz)					
	Measured			-		1.51	-		1.57					
NET	Indicated	various	3,000	0.7	0.3	1.0	69	86	337					
CHANGE	Inferred		-2,100	0.3	0.0	-1.5	-39	-50	-349					
	Total		1,000	0.2	0.1	-0.4	30	36	-12					

¹¹ 2025 Open pittable Mineral Resource figures are reported within a constraining pit shell applying the following metal price and exchange rate assumptions: USD\$10,337/t Cu, USD\$2,797/oz Au, USD\$33.67/oz Ag and AUD:USD 0.682. NSR cut-off of \$18/t for open pit oxide, \$59/t for open pit supergene/primary.

¹² 2025 Underground Mineral Resource figures are reported within \$108/t NSR stope optimiser shapes.

¹³ Discrepancy in summation may occur due to rounding.

¹⁴ August 2022 Mineral Resource supporting documentation refer to ASX Announcement "Constellation Mineral Resource Update" dated 18th August 2022.

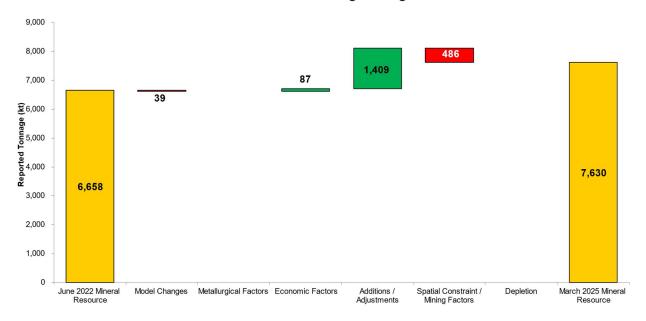
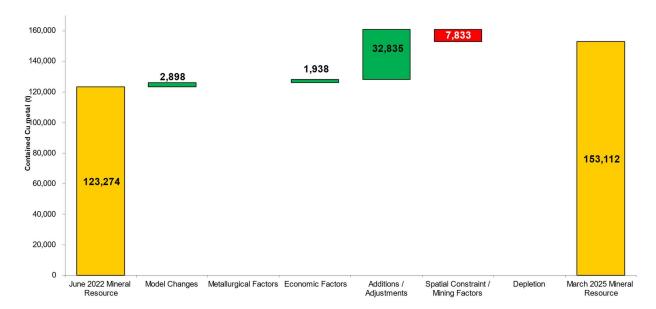
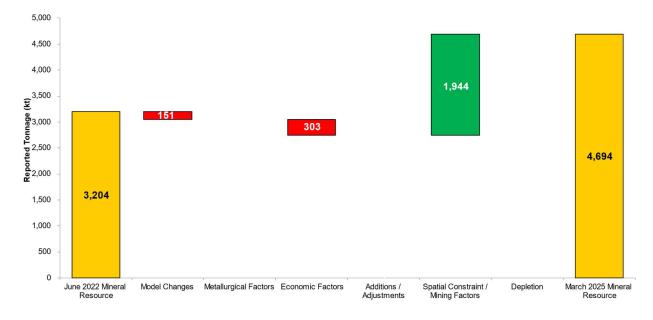



Figure 3 – Constellation total MRE tonnage changes from August 2022 to March 2025

Constellation Total Mineral Resource Tonnage Changes


Figure 4 – Constellation total MRE Cu metal changes from August 2022 to March 20225

Constellation Total Mineral Resource Cu Metal Changes

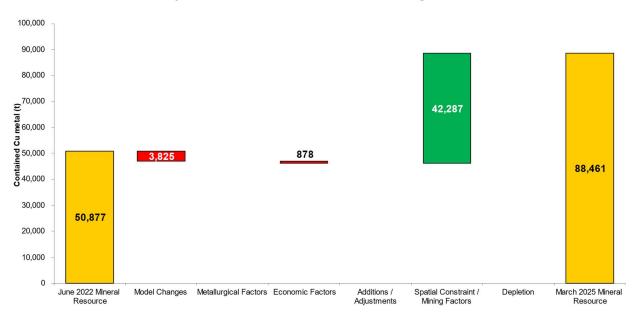


Figure 5 – Constellation Open Pit MRE tonnage changes from August 2022 to March 2025

Constellation Open Pit Mineral Resource Tonnage Changes

Figure 6 - Constellation Open Pit MRE Cu metal changes from August 2022 to March 2025

Constellation Open Pit Mineral Resource Cu Metal Changes

NEXT STEPS

Work at Constellation will now focus on the completion of the feasibility study on an open pit and underground operation with ancillary surface infrastructure. The feasibility study is expected to be complete in Q2 FY26 and will inform the release of a maiden Ore Reserve estimate.

The Environmental Impact Statement (EIS) for Constellation development has been lodged with the NSW Department of Planning and Environment with determination and the granting of the Mining Lease expected within CY25.

Upon completion of the feasibility study and receipt of final approvals, the project will be submitted for final investment decision by the Aeris Board.

CONSTELLATION DEPOSIT - GEOLOGY

The Constellation deposit is hosted within the 'early to mid' Ordovician metasediments of the Girilambone Group, a sequence of highly deformed and strongly foliated sandstones (psammites), quartzite, pelites, phyllite, chert and graphitic shales with lesser mafic units. Regional metamorphism is of lower-to-middle greenschist facies, with abundant quartz, muscovite, chlorite, and minor epidote. Altered Alpine and Alaskan-type ultramafic bodies are also present, residing in the east of the region. The deformation history of the area has resulted in the development of shear zones, faults and multiple generations of folding, with two prominent foliations developed. North-northwest post-orogenic monzodiorite intrusions crosscut these older sequences.

The Constellation deposit bears marked similarities with other copper deposits discovered within the Tritton Copper Operations tenement package, including the large Tritton (+20Mt) and Murrawombie (+15Mt) deposits. These mineralised systems are typically constrained by structural and lithological elements and form pipe-like bodies. Deposits in the area, including Constellation, appear to correlate with zones of structural complexity, with evidence that mineralisation occurred late in the structural history. Folding and faulting in these structural domains have allowed for dilation and transport of enriched fluids to precipitate copper +/- gold +/- silver mineralisation within modified lithologic and structurally controlled positions.

The mineralisation style at Constellation comprises massive, banded to disseminated sulphides with pyrite, chalcopyrite and minor pyrrhotite in the primary zones. There are also well-developed oxide and supergene mineralised horizons. Within the oxide domain, dominant copper minerals include malachite and azurite with minor chrysocolla and native copper. Underlying the oxide horizon is a supergene domain which is dominated by the presence of chalcocite with varying quantities of pyrite and lesser chalcopyrite +/- malachite/azurite.

The highest copper grades occur in quartz-rich zones with chalcopyrite brecciainfill, and in chalcocite domains. The mineralised system plunges moderately to the south-east (30°) and consists of two structural zones. The main zone dips moderately to the east, and on its northern side, a steep zone (standup zone) is present, which dips to the south. The orientation change of the system is both shear and fold related.

The Constellation mineralised system has been traced 1,100m down plunge and up to 300m along strike. The deposit remains open down plunge. Previously reported DHEM surveying detected two large conductive bodies which extend below the base of drilling¹⁵, providing encouragement that the mineralised system remains open down-plunge and along the northern and southern boundaries.

¹⁵ Refer to ASX announcement "Quarterly Activities Report - December 2021" dated 28th January 2022.

Figure 6 – Long section looking west showing the modelled copper mineralised domains and drill hole intercepts (Cu assays).

Drilling and sampling techniques

Exploration and Resource Definition drilling has been undertaken using Reverse Circulation (RC) and Diamond Drilling (DD) methods. RC pre-collars with diamond drill tails (RCD) have also been used. Only assays from RC, RCD and DD drilling were included in the dataset used to inform the resource model.

Drillhole information used to inform the March 2025 MRE includes a total of 110 RC holes and 154 diamond holes for a total of 52,012.2m, of which 42,794.8m are diamond core (82%). Drilling at the Constellation deposit was completed by DRC Drilling and Durock Drilling, as contracting agents for Aeris Resources Limited. Drilling to 200m below surface was primarily via RC drilling on a nominal 25m-30m x 25m-30m drill spacing. Below 200m, all drilling has been completed via diamond drilling methods. The drill spacing varies from 40m x 40m to 80m x 80-100m.

Diamond drill core was nominally sampled at 1.0m intervals; however, sample lengths were primarily determined by geological boundaries, including lithology, sulphide textures and visual copper mineral content. Sample intervals varied between a minimum of 0.20m to a maximum 1.40m.

All diamond drill core was halved along the core axis using a core saw, with one half dispatched for analysis and the other half retained in the original core tray. Half core samples were sent to a certified sample preparation and assay laboratory. Upon arrival at the laboratory, each sample was weighed and recorded.

Samples weighing more than 3 kg were crushed using a Boyd crusher (90% passing 2mm) and then split into a sub-sample of between 2 and 3 kg using a rotary splitter. The sub-sample was pulverised and homogenised using an LM5 mill to 80% passing 75µm. A, 300g sample was taken from the pulverised material for assaying.

Samples weighing less than 3kg were crushed via a jaw crusher to 70% passing 6mm, and the whole sub-sample was pulverised and homogenised in an LM5 with a 300g sub-sample taken for assaying.

Sample recoveries from the RC drill program averaged greater than 90%. An assessment of recovery was visually made at the drill rig from sample return to the cyclone. One metre composite chip sub samples were collected from the cyclone splitter off the RC drill rig. All RC sample chips were logged by the on-site geologist in 1m intervals. Based on the observed geology, either 1m or 4m sample intervals were selected for laboratory analysis. The intent was to ensure samples that were within or proximal to copper mineralisation were sampled at 1m intervals.

Sample blanks and certified reference materials (industry standards) were routinely submitted at a frequency of 1 in 20. Field duplicates were retained from RC holes and re-submitted periodically to test assay reproducibility.

Modelled Domains

All geological domain wireframes used for the resource model are based on 1m composited drillhole data. For each estimated variable (copper, gold, silver, sulphur, iron and density), distinct populations were identified from statistical analysis and grade distributions viewed spatially in 3D. Domain wireframes were generated for the estimated elements based on grade shells, except for the weathering profiles that were based on drill logs. The copper domains were created within a 0.1% copper grade shell in the oxide domain, and 0.3% copper grade shells in the supergene and primary sulphide (chalcopyrite) mineralisation (based on copper sequential data analysis) Different grade shells were created for gold, silver and sulphur/iron domaining based on statistical analysis of assay data. The iron and grade domains.

Estimation parameters

Aeris Resources has completed data validation, QA/QC, geological interpretation, geological modelling, and resource estimation internally.

All data collected from the exploration and resource definition drill program at Constellation is stored within the company's acQuire database.

Ordinary Kriging (OK) was used for estimating copper, gold, silver, sulphur, iron, and density within a block model with a parent block size of 10.0 m (east) x 10.0 m (north) x 5.0 m (RL). The block model is subdivided into cells with a minimum size of 1.0m x 1.0m x 1.25m to ensure accurate volumes are reported from each estimation domain. Grade estimates within each sub block are awarded the parent block grade. Kriging neighbourhood analysis was performed to determine an appropriate block size and sample selection protocols.

The application of a top-cut was considered for each estimation domain (mineralised and background) for all elements. Most estimation domains applied a top-cut to exclude outlier high grades. The assessment of top-cuts was completed through statistical analyses (histogram distribution, lognormal probability plots, and summary statistics) and by reviewing the spatial location, continuity, and continuity of grade trends. All contacts are treated as hard domain boundaries based on reviewing grade trends between adjoining estimation domains. Different search parameters and variogram models were used as deemed appropriate for the specifics of each estimation domain.

The resource model was validated using a variety of methods, including visual and statistical approaches. These methods included comparing declustered composite data against the OK block estimates within each estimation domain and a visual comparison of estimated block grades against the composited data.

Mineral Resource Classification

The March 2025 Constellation MRE has been classified as Indicated and Inferred, based on drill density and confidence in the geological interpretation and grade estimation.

Indicated Mineral Resource is reported from areas with a drill density up to 40m x 40m with a good understanding of the geology and copper grade continuity.

Inferred Mineral Resource is classified within areas with wider drill spacing, up to 80m along strike and 100m along the dip plane. Geological understanding is appropriate at the domain scale, and there is some understanding of mineralisation between drillholes.

Cut-off grade/reporting criteria

The March 2025 Constellation MRE has been reported using Net Smelter Return (NSR) cut-off values to reflect the potential open pit and underground Mineral Resources.

A range of NSR cut-off values has been used to report the Mineral Resource, taking into consideration the mining method and processing stream. Key input parameters used for the NSR valuation include metal prices (AUD\$10,337/t copper, AUD\$2,797/oz gold, AUD\$33.67/oz silver, variable operating costs, processing streams, and metallurgical recoveries.

Potential open-pittable Mineral Resource is reported within a conventional Lerchs-Grossmann Pit optimisation shell generated using Maxflow algorithm.

Copper oxide mineralisation is reported at a \$18/t NSR cut-off, while supergene and primary copper sulphide mineralisation is reported at a \$59/t NSR cut-off. The cost difference reflects the different processing streams: heap leach for copper oxide and flotation for the supergene and primary copper sulphide domains.

The underground Mineral Resource is reported from within SO shapes at a 108/t NSR cut-off.

Metallurgical recovery assumptions are based on a test work program completed by Core Resources, who undertook testing across eight (8) Constellation composites encompassing the different mineralised horizons. In total, analysis was completed on four oxide, two supergene and two primary composites.

<u>Oxide</u>

Bottle roll and column leach tests were performed on oxide composites and revealed variable copper recovery across the oxide deposit. However, leach performance was well predicted by the acid soluble proportion within the copper

speciation test (copper sequential assay), with recovered metal matching the acidsoluble copper assay. Therefore, recovery within the oxide domain is outlined as:

Cu recovery 100% (of acid soluble Cu assay), Au recovery 0%, Ag recovery 0%

<u>Supergene</u>

Composites were subjected to flotation tests based on standard Tritton operating conditions. Flotation results were favorable with rougher only flotation resulting in high metal recovery (Cu recovery +97%, Au recovery 86.7%) to saleable concentrate grades (24.4% Cu). Due to the limited volume of tests, a more conservative copper recovery reflecting that applied to other Tritton orebodies has been applied.

• Cu recovery 94.5%, Au recovery 86.7%, Ag recovery 34.7%

<u>Primary</u>

Composites were subjected to flotation tests based on standard Tritton operating conditions. Again, flotation results were favorable with locked cycle flotation resulting in high metal recovery (Cu recovery +96.6%, Au recovery 87.1%) to saleable concentrate grades (23.1% Cu). Due to the limited volume of tests, a more conservative copper recovery reflecting that applied to other Tritton orebodies has been applied.

• Cu recovery 94.5%, Au recovery 87.1%, Ag recovery 83.1%

Underground stope optimisation

Based on the Constellation deposit geometry, the sub-level open stoping (SLOS) mining method was selected as the basis for inventory shape generation. The Deswik Stope Optimiser (SO) software was used to generate shapes that satisfy the Reasonable Prospects of Eventual Economic Extraction (RPEE) requirement. The SO process considered various stope designs, and cost and revenue parameters to establish inventory shape extents. Inventory shapes intersecting the reporting pit shell have been excluded.

Shape geometry has been informed by the experience at other Tritton deposits with a mix of transverse and longitudinal sub-level open stoping (SLOS) shapes generated. The general SO parameters are presented in Table 3 below.

	KEY STOPE OPTIMI	SATION PARAMETERS
Parameter	Value	Source/Rationale
Economic Cutoff	A\$108/†	
Level spacing	20 m	
Strike Length	15 m	Tritton current practice / amenable to Constellation
Minimum mining width	3 m	
Stope Splitting Interval	15 m	Transverse splitting interval of 15 m
Stope FW Angle	47°	Maximum footwall angle to maintain flow of material
Stope HW Angle	41°	Minimum hanging wall angle to recover material

Table 3: Economic and other parameters applied to stope optimisation.

Previous Information

The drillhole information in this announcement that has been used for the Constellation Mineral Resource have been reported from previous ASX announcements all of which are available on the Company's website at <u>www.aerisresources.com.au</u>.

This announcement is authorised for lodgement by:

Andre Labuschagne Executive Chairman

ends

For further information, please contact:

Andre Labuschagne Executive Chairman Tel: +61 7 3034 6200 Stefan Edelman General Manager – Corporate Development investorrelations@aerisresources.com.au

or visit our website at <u>www.aerisresources.com.au</u>

About Aeris

Aeris Resources is a mid-tier base and precious metals producer. Its copper dominant portfolio comprises two operating assets, a mine on care and maintenance, a long-life development project and a highly prospective exploration portfolio.

Aeris has a strong pipeline of organic growth projects, an aggressive exploration program and continues to investigate strategic merger and acquisition opportunities. The Company's experienced board and management team bring significant corporate and technical expertise to a lean operating model. Aeris is committed to building strong partnerships with its key community, investment and workforce stakeholders.

Competent Persons Statement

The information in this report that relates to Exploration Results and Mineral Resources is based on information compiled by Mr Brad Cox. Mr Cox confirms that he is the Competent Person for all Exploration Results and Mineral Resources summarised in this Report and he has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Targets, Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Cox is a Competent Person as defined by the JORC Code, 2012 Edition, having relevant experience to the style of mineralisation and type of deposit described in the Report and to the activity for which he is accepting responsibility. Mr Cox is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM No. 220544). Mr Cox has reviewed the Report to which this Consent Statement applies and consents to the inclusion in the Report of the matters based on his information in the form and context in which it appears. Mr Cox is a full time employee of Aeris Resources Limited.

APPENDIX A:

Tab	le 1	1 – Su	mm	ary	of	f drill	ho	le c	:ol	lar d	anc	l s	urve	₹γ	d d	etai	ils fo	r c	irill	hole	S	reference	ed in the	: body	/
of th	his	repo	rt as	ро	ırt e	of the	e C	on	ste	llati	on	Μ	line	a	I R	eso	urce	e.							
		_		_		-						-	-					-					-	-	1

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Dept (m)	hAzimuth ²	Dip	Comments
TAKD001	498725	6560996	162	319.0	260.0	-70.0	
TAKD002	498420	6561110	163	165.6	260.0	-60.0	
TAKD003	498801	6560971	162	360.5	260.0	-70.0	
TAKD004	498750	6561073	162	279.3	260.0	-70.0	
TAKD005	498785	6560892	161	355.0	260.0	-70.0	
TAKD006	498701	6560919	162	300.0	260.0	-70.0	
TAKD007	498895	6560941	161	429.9	260.0	-70.0	
TAKD008	498896	6560941	161	39.4	268.4	-85.3	
TAKD009	498641	6561015	162	243.9	260.0	-70.0	
TAKD010	498777	6561021	162	285.0	260.0	-70.0	
TAKD011	498937	6560865	161	438.0	260.0	-60.0	
TAKD012	499128	6560909	160	501.6	264.0	-60.0	
TAKD013	499220	6560926	160	582.6	268.0	-60.0	
TAKD014	499220	6560923	160	650.0	262.0	-60.0	
TAKD015	499221	6560921	160	651.8	246.0	-70.0	
TAKD016	498861	6560996	161	342.8	260.8	-69.1	
TAKD017	498950	6560995	161	380.0	258.6	-69.8	
TAKD018	498893	6561012	161	348.8	260.0	-70.0	
TAKD019	498557	6561056	163	250.0	260.0	-70.0	
TAKD020	498528	6560953	162	219.9	285.0	-70.0	
TAKD021	498616	6560923	162	261.7	285.0	-70.0	
TAKD022	498736	6560868	162	303.8	260.0	-70.0	
TAKD023	498977	6560913	161	411.7	260.0	-70.0	
TAKD024	498817	6560845	161	369.8	260.0	-70.0	
TAKD025	498615	6561021	162	300.7	245.0	-64.0	
TAKD026	498682	6560841	162	307.9	260.0	-70.0	
TAKD027	498603	6561080	163	249.8	260.0	-70.0	
TAKD028	498694	6561051	162	250.2	260.0	-70.0	

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Dept (m)	hAzimuth ²	Dip	Comments
TAKD029	498648	6561019	162	252.6	208.0	-70.0	
TAKD030	498736	6561004	162	291.6	208.0	-70.0	
TAKD031	498804	6560977	161	339.7	218.0	-70.0	
TAKD032	498902	6560948	161	414.7	218.0	-70.0	
TAKD033	498583	6560793	163	287.6	260.0	-70.0	
TAKD034	498607	6560862	163	207.6	260.0	-70.0	
TAKD035	498524	6560883	163	201.7	260.0	-70.0	
TAKD036	498452	6560907	163	159.5	260.0	-70.0	
TAKD037	498755	6560830	162	327.6	260.0	-70.0	
TAKD038	498427	6560827	165	196.1	260.0	-70.0	
TAKD039	498557	6560835	164	184.7	260.0	-70.0	
TAKD040	498931	6560866	161	405.0	250.0	-72.0	
TAKD041	498582	6560912	163	173.7	260.0	-70.0	
TAKD042	498888	6560857	161	399.6	226.0	-70.0	
TAKD043	498655	6560891	163	260.0	260.0	-70.0	
TAKD044	498625	6560810	163	222.7	260.0	-70.0	
TAKD045	498828	6561047	162	279.6	258.7	-70.5	
TAKD046	498677	6560844	163	285.6	220.0	-72.0	
TAKD047	498991	6560997	161	357.5	263.6	-70.3	
TAKD048	498781	6560893	162	355.0	191.0	-70.0	
TAKD049	498640	6561061	163	226.0	254.0	-69.7	
TAKD050	498756	6560839	162	336.6	198.0	-70.0	
TAKD051	498703	6560823	163	292.6	200.0	-68.0	
TAKD052	498633	6560815	163	256.0	200.0	-70.0	
TAKD053	498964	6561046	162	353.1	260.0	-70.0	
TAKD054	498887	6561068	162	321.6	260.0	-70.0	
TAKD055	498803	6561091	162	279.6	260.0	-70.0	
TAKD056	498486	6560855	164	219.0	260.0	-70.0	
TAKD057	498414	6560877	165	176.0	260.0	-70.0	
TAKD058	498504	6560807	164	171.6	260.0	-70.0	
TAKD059	498355	6560848	166	150.7	260.0	-70.0	
TAKD060	498508	6560933	163	168.8	260.0	-70.0	
TAKD061	499282	6560765	160	651.3	260.0	-70.0	
TAKD062	499323	6560861	159	612.4	260.0	-70.0	
TAKD063	498333	6561048	164	117.7	260.0	-70.0	
TAKD064	498290	6560980	164	100.9	220.0	-70.0	
TAKD066	498424	6561111	164	100.0	30.8	-70.3	
TAKD067	498411	6561034	163	150.0	120.0	-70.0	
TAKD069	498517	6561154	164	75.7	153.2	-89.5	
TAKD071	498543	6561174	164	261.4	189.4	-49.8	
TAKD072	498590	6561175	164	255.3	190.0	-50.0	
TAKD073	498284	6560963	164	50.1	286.0	-89.6	
TAKD074	498329	6561102	163	36.4	0.0	-90.0	

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Depti (m)	hAzimuth ²	Dip	Comments
TAKD075	499336	6561065	160	615.7	200.0	-70.0	
TAKD076	498539	6560949	162	171.6	220.0	-70.0	
TAKD077	498478	6560960	163	226.3	355.0	-50.0	
TAKD078	498439	6560984	163	204.2	355.0	-50.0	
TAKD079	498342	6560982	163	99.5	260.0	-70.0	
TAKD080	498260	6561070	164	100.0	264.0	-70.0	
TAKD081	498388	6561068	163	100.0	270.0	-70.0	
TAKD082	498433	6561090	163	105.6	260.0	-70.0	
TAKD083	498446	6561065	163	120.9	260.0	-70.0	
TAKD084	498481	6561079	163	147.8	260.0	-70.0	
TAKD085	498680	6560992	162	216.5	355.0	-65.0	
TAKD086	498680	6560994	162	153.2	355.0	-52.0	
TAKD087	498468	6561029	163	111.2	355.0	-50.0	
TAKD088	498525	6561032	163	123.2	355.0	-50.0	
TAKD089	498364	6561055	163	123.1	355.0	-50.0	
TAKD090	498410	6560980	163	180.1	351.7	-50.9	
TAKD091	498406	6561043	163	138.2	355.0	-50.0	
TAKD092	498434	6560929	163	205.1	355.0	-50.0	
TAKD093	499001	6560787	161	99.8	281.0	-72.0	
TAKD094	498998	6560787	161	438.9	286.5	-72.7	
TAKD095	499169	6560764	160	534.9	281.5	-70.0	
TAKD096	498970	6560712	161	15.3	286.5	-69.0	
TAKD097	498968	6560713	161	429.8	286.1	-68.5	
TAKD098	499138	6560674	160	516.4	288.6	-69.0	
TAKD099	499093	6560753	160	504.4	287.1	-69.3	
TAKD100	499067	6560700	160	471.5	277.4	-67.9	
TAKD101	498419	6560986	163	219.8	0.6	-56.2	
TAKD102	498467	6560931	163	282.8	1.0	-55.0	
TAKD104	498430	6561049	163	119.3	6.1	-57.0	
TAKD105	498369	6561027	163	166.7	19.4	-53.9	
TAKD106	498508	6560984	163	205.1	1.5	-54.0	
TAKD107	498522	6561018	163	154.2	3.7	-54.4	
TAKD108	498507	6560950	163	256.0	1.6	-55.0	
TAKD109	498610	6561017	162	171.2	0.7	-55.8	
TAKD110	498743	6560888	162	315.2	1.3	-59.3	
TAKD111	498712	6560820	162	262.3	267.8	-69.9	
TAKD112	498502	6560807	164	132.1	309.6	-70.0	
TAKD113	498548	6560847	163	159.3	311.1	-70.0	
TAKD114	498558	6560975	162	200.0	0.5	-52.4	
TAKD115	498574	6560792	164	179.9	303.2	-71.6	
TAKD116	498554	6560931	163	156.5	308.5	-70.5	
TAKD117	498780	6560975	161	190.6	3.6	-64.0	
TAKD118	498602	6560870	163	197.7	310.3	-69.7	

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Dep (m)	thAzimuth ²	Dip	Comments	
	. ,	. ,	1.40		010.0	70.5		
TAKD119	498622	6560808	163	210.3	310.9	-70.5		
TAKD120	498907	6560865	161	344.3	357.3	-58.5		
TAKD121	498598	6560944	162	186.3	308.0	-70.1		
TAKD122	498668	6560824	163	248.0	307.7	-69.9		
TAKD123	498882	6560776	162	422.5	352.7	-55.3		
TAKD124	498689	6560906	162	239.5	310.9	-69.4		
TAKD125	498664	6560974	162	213.5	309.8	-70.8		
TAKD126	498636	6560896	162	195.4	309.5	-70.1		
TAKD127	498712	6560844	162	239.5	310.3	-70.0		
TAKD128	498722	6560985	162	253.6	301.1	-70.6		
FAKD129	498741	6560918	162	264.5	312.2	-67.8		
TAKD130	498778	6560869	161	305.6	312.1	-69.8		
TAKD131	498838	6560856	161	311.8	270.8	-70.2		
TAKD132	498781	6560841	162	304.4	269.3	-71.0		
TAKD133	498865	6560881	161	350.5	269.0	-69.6		
TAKD134	498570	6560706	164	222.3	309.6	-69.8		
TAKD135	498610	6560677	165	248.0	309.9	-70.3		
[AKD136	498613	6560736	164	249.5	308.9	-70.1		
TAKD137	498935	6560910	161	373.4	269.8	-65.2		
TAKD138	498711	6560717	164	324.4	309.1	-69.5		
TAKD139	498818	6560857	161	330.0	310.3	-69.5		
TAKD140	498758	6560733	163	344.2	310.0	-70.2		
TAKD141	498889	6560891	161	351.0	308.7	-69.1		
TAKD142	498821	6560745	162	363.2	309.5	-70.0		
TAKD143	498912	6560879	161	402.8	270.0	-70.0		
TAKD144	498855	6560748	162	411.6	308.7	-70.0		
TAKD145	498793	6560945	161	296.1	301.6	-70.3		
TAKD146	498828	6560891	161	336.4	310.7	-70.5		
TAKD147	498440	6561024	163	148.8	336.8	-54.0		
TAKD148	498411	6561063	163	144.2	280.3	-61.1		
TAKD149	498439	6560992	163	197.9	6.7	-60.1		
TAKD150	498373	6561053	163	125.7	284.0	-61.3		
TAKD151	498325	6561037	163	123.2	269.5	-61.3		
TAKD152	498472	6561004	163	170.6	352.1	-54.9		
TAKD152	498454	6560939	163	264.7	353.9	-55.1		
TAKD155	498499	6561026	163	150.1	1.2	-60.3		
TAKD155	498499	6560913	163	294.7	0.4	-55.4		
TAKD155	498495	6560949	162	224.1	353.3	-54.8		
TAKD150 TAKD157	498518	6560918	163	164.1	310.1	-70.3		
TAKD157	498525	6560939	162	257.3	0.0	-55.7		
TAKRC001	498314	6561137	163	50.0	260.0	-70.0		
TAKRC001		6561121		50.0		-70.0		
TAKRC002	498353 498396	6561121	164 163	71.8	260.0 260.0	-70.0		

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Dept (m)	hAzimuth ²	Dip	Comments
TAKRC004	498435	6561094	163	132.9	260.0	-70.0	
TAKRC005	498476	6561081	163	166.8	260.0	-70.0	
TAKRC006	498518	6561067	163	201.8	260.0	-70.0	
TAKRC007	498457	6561170	164	70.0	260.0	-70.0	
TAKRC008	498452	6561130	164	111.8	260.0	-70.0	
TAKRC009	498424	6561061	163	141.8	260.0	-70.0	
TAKRC010	498383	6561071	163	84.0	260.0	-70.0	
TAKRC011	498342	6561082	163	78.0	260.0	-70.0	
TAKRC012	498301	6561096	164	50.0	260.0	-70.0	
TAKRC013	498365	6561160	164	50.0	260.0	-70.0	
TAKRC014	498407	6561146	164	60.0	260.0	-70.0	
TAKRC015	498487	6561117	163	132.7	260.0	-70.0	
TAKRC016	498529	6561105	163	120.0	260.0	-70.0	
TAKRC017	498462	6561045	163	177.9	260.0	-70.0	
TAKRC018	498507	6561021	163	195.8	260.0	-70.0	
TAKRC019	498334	6561046	163	50.0	260.0	-70.0	
TAKRC020	498368	6561021	163	100.0	260.0	-70.0	
TAKRC021	498413	6561021	163	120.0	260.0	-70.0	
TAKRC022	498456	6561002	163	140.0	260.0	-70.0	
TAKRC023	498498	6560991	162	156.0	260.0	-70.0	
TAKRC024	498317	6561072	164	84.0	260.0	-70.0	
TAKRC025	498304	6561034	164	84.0	260.0	-70.0	
TAKRC026	498346	6561020	163	84.0	260.0	-70.0	
TAKRC027	498385	6561004	163	102.0	260.0	-70.0	
TAKRC028	498431	6560983	163	132.0	260.0	-70.0	
TAKRC029	498322	6561002	163	84.0	260.0	-70.0	
TAKRC030	498367	6560986	163	120.0	263.6	-70.2	
TAKRC031	498408	6560975	163	120.0	264.2	-70.7	
TAKRC032	498358	6561056	163	84.0	260.4	-69.4	
TAKRC033	498397	6561042	163	120.0	261.8	-69.6	
TAKRC034	498438	6561028	163	138.0	255.6	-67.5	
TAKRC035	498481	6561026	163	156.0	263.5	-69.9	
TAKRC036	498329	6561108	164	84.0	263.3	-70.3	
TAKRC037	498368	6561093	163	96.0	263.4	-67.6	
TAKRC038	498408	6561082	163	129.9	270.0	-70.0	
TAKRC039	498448	6561069	163	144.9	257.0	-70.4	
TAKRC040	498490	6561060	163	177.8	267.4	-67.4	
TAKRC041	498380	6561134	164	84.0	261.8	-68.6	
TAKRC042	498422	6561117	164	120.0	261.4	-70.5	
TAKRC043	498462	6561105	163	138.0	260.0	-70.0	
TAKRC044	498501	6561092	163	138.0	260.0	-70.0	
TAKRC045	498391	6561173	164	85.0	260.0	-70.0	
TAKRC046	498432	6561158	164	120.0	260.0	-70.0	

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Depti (m)	hAzimuth ²	Dip	Comments
TAKRC047	498474	6561140	164	120.0	260.0	-70.0	
TAKRC048	498513	6561129	163	150.0	260.0	-70.0	
TAKRC049	498531	6561039	162	174.0	260.0	-70.0	
TAKRC050	498544	6561076	163	219.8	260.0	-70.0	
TAKRC051	498295	6560999	164	84.0	260.0	-70.0	
TAKRC052	498334	6560981	164	57.0	260.0	-70.0	
TAKRC053	498467	6560972	163	160.0	260.0	-70.0	
TAKRC054	498314	6560972	164	60.0	260.0	-70.0	
TAKRC055	498381	6560967	164	108.0	260.0	-70.0	
TAKRC056	498442	6560965	163	168.0	260.0	-70.0	
TAKRC057	498512	6560960	163	174.0	260.0	-70.0	
TAKRC058	498352	6560956	164	108.0	260.0	-70.0	
TAKRC059	498416	6560954	164	119.0	260.0	-70.0	
TAKRC060	498483	6560947	163	150.0	260.0	-70.0	
TAKRC061	498326	6560947	164	90.0	260.0	-70.0	
TAKRC062	498392	6560943	164	110.0	260.0	-70.0	
TAKRC063	498460	6560937	164	138.0	260.0	-70.0	
TAKRC064	498298	6560937	165	88.0	260.0	-70.0	
TAKRC065	498365	6560931	164	102.0	260.0	-70.0	
TAKRC066	498432	6560924	164	132.0	260.0	-70.0	
TAKRC067	498339	6560919	165	108.0	260.0	-70.0	
TAKRC068	498406	6560912	164	126.0	263.0	-70.3	
TAKRC069	498313	6560907	165	108.0	260.0	-70.0	
TAKRC070	498380	6560900	165	138.0	260.0	-70.0	
TAKRC071	498355	6560889	165	120.0	260.0	-70.0	
TAKRC072	498584	6561066	163	250.0	260.1	-70.6	
TAKRC073	498599	6561042	163	252.0	260.0	-70.0	
TAKRC074	498577	6561027	163	252.0	260.0	-70.0	
TAKRC075	498549	6561021	163	240.0	260.0	-70.0	
TAKRC076	498270	6560985	164	78.0	267.7	-69.5	
TAKRC077	498232	6560999	165	54.0	268.1	-70.6	
TAKRC078	498193	6561013	165	54.0	267.8	-70.0	
TAKRC079	498206	6561049	164	54.0	267.6	-70.2	
TAKRC080	498221	6561089	164	54.0	270.9	-69.1	
TAKRC081	498180	6560976	165	60.0	267.6	-70.5	
TAKRC082	498165	6560937	166	60.0	261.6	-70.9	
TAKRC083	498288	6561060	164	84.0	272.5	-70.9	
TAKRC084	498284	6561025	164	78.0	260.0	-78.0	
TAKRC085	498256	6560949	165	54.0	269.6	-69.2	
TAKRC086	498243	6560911	166	54.0	261.3	-70.4	
TAKRC087	498288	6561152	165	54.0	265.8	-69.6	
TAKRC088	498274	6561115	164	72.0	271.2	-69.6	
TAKRC089	498259	6561075	164	42.0	267.8	-69.0	

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Depth (m)	Azimuth ²	Dip	Comments
TAKRC090	498245	6561037	164	54.0	271.7	-70.6	
TAKRC091	498218	6560962	165	54.0	265.3	-71.0	
TAKRC092	498205	6560926	166	54.0	265.1	-69.5	
TAKRC093	498231	6560935	165	54.0	271.4	-70.4	
TAKRC094	498241	6560975	165	54.0	260.0	-70.0	
TAKRC095	498207	6560985	165	54.0	260.0	-70.0	
TAKRC096	498255	6561012	164	84.0	260.0	-70.0	
TAKRC097	498221	6561026	164	54.0	260.0	-70.0	
TAKRC098	498271	6561050	164	84.0	260.0	-70.0	
TAKRC099	498231	6561063	164	54.0	260.0	-70.0	
TAKRC100	498282	6561086	164	84.0	260.0	-70.0	
TAKRC101	498246	6561103	164	72.0	260.0	-70.0	
TAKRC102	498236	6561127	164	54.0	260.0	-70.0	
TAKRC103	498263	6561141	165	54.0	260.0	-70.0	
TAKRC104	498281	6560959	165	36.0	260.0	-70.0	
TAKRC105	498268	6560922	165	54.0	260.0	-70.0	
TAKRC106	498281	6560895	166	54.0	260.0	-70.0	
TAKRC107	498254	6560882	166	54.0	260.0	-70.0	
TAKRC108	498291	6560871	166	54.0	260.0	-70.0	
TAKRC109	498267	6560857	166	54.0	260.0	-70.0	
TAKRC110	498232	6560875	166	54.0	260.0	-70.0	

¹ Easting and northing coordinates are reported in GDA2020 Zone 55.

² Azimuth is recorded as a magnetic azimuth reading.

APPENDIX B:

Resource.								
Hole ID	Туре	From (m)	To (m)	Interval ¹ (m)	Cu (%)²	Au (g/t)	Ag (g/t)	Си Туре
TAKD001	DD	197.1	217.1	11.9	2.36	0.64	4.53	Primary
TAKD002	DD	45.7	86.0	34.2	2.32	0.28	1.59	Supergene
TAKD003	DD	234.0	261.0	16.5	1.59	0.43	3.58	Primary
TAKD004	DD	No significo	ant interce	pt				
TAKD005	DD	244.0	248.9	2.7	3.29	0.57	7.20	Primary
TAKD006	DD	199.9	206.0	3.6	4.35	0.91	8.05	Primary
TAKD007	DD	297.3	321.4	13.6	1.43	0.50	2.69	Primary
TAKD008	DD	No significo	ant interce	pt				
TAKD009	DD	150.0	150.7	0.7	2.59	0.61	6.26	Undomained
TAKD010	DD	216.7	228.0	7.0	1.01	1.15	1.89	Primary

Table 2 – Summary of significant copper intersections within the Constellation Mineral Resource.

Hole ID	Туре	From (m)	To (m)	Interval ¹ (m)	Cu (%)²	Au (g/t)	Ag (g/t)	Си Туре			
TAKD011	DD	346.8	349.0	1.0	7.10	4.66	18.24	Primary			
TAKD012	DD	435.0	446.9	6.3	1.65	0.64	2.65	Primary			
TAKD013	DD	No significo	No significant intercept								
TAKD014	DD	475.1	495.2	9.1	2.00	0.48	4.90	Primary			
TAKD015	DD	463.0	469.3	3.8	0.83	0.46	1.62	Primary			
TAKD016	DD	268.9	280.7	7.0	1.41	0.40	3.28	Primary			
TAKD017	DD	310.8	327.4	9.8	1.79	0.60	4.23	Primary			
TAKD018	DD	255.3	272.0	7.2	2.99	0.87	6.18	Primary			
TAKD019	DD	140.3	204.0	24.9	2.21	0.99	5.12	Primary			
TAKD020	DD	109.0	121.5	7.7	1.06	0.21	2.29	Primary			
TAKD021	DD	137.1	150.1	7.7	2.78	0.95	4.75	Primary			
TAKD022	DD	230.1	248.8	11.6	3.08	1.16	5.48	Primary			
TAKD023	DD	351.1	363.7	7.5	1.42	0.32	1.15	Primary			
TAKD024	DD	281.1	309.6	16.8	1.78	0.74	4.83	Primary			
TAKD025	DD	No significo	ant interce	pt							
TAKD026	DD	202.2	220.7	10.8	1.43	0.66	5.10	Primary			
TAKD027	DD	No significo	ant interce	pt							
TAKD028	DD	141.6	164.0	8.3	1.75	0.59	3.20	Primary			
TAKD028	DD	169.9	176.4	3.86	5.77	1.75	9.60	Primary			
TAKD029	DD	158.6	171.9	7.85	2.33	0.69	4.62	Primary			
TAKD030	DD	226.8	240.4	8.68	1.96	0.57	4.09	Primary			
TAKD031	DD	285.4	292.0	3.86	1.25	0.49	2.36	Primary			
TAKD032	DD	352.8	359.3	3.84	6.01	2.54	45.23	Primary			
TAKD033	DD	154.0	154.5	0.28	2.98	0.62	20.14	Primary			
TAKD034	DD	148.8	158.0	5.51	4.29	1.39	14.72	Primary			
TAKD035	DD	109.3	119.0	5.78	0.56	0.35	2.79	Primary			
TAKD036	DD	102.5	106.1	2.11	0.73	0.61	3.56	Primary			
TAKD037	DD	258.9	263.3	2.56	0.45	0.31	1.62	Primary			
TAKD038	DD	No significo	int interce	pt		·					
TAKD039	DD	125.3	127.1	1.0	1.91	0.76	23.86	Primary			
TAKD040	DD	340.6	357.7	10.4	1.46	0.81	2.42	Primary			
TAKD041	DD	120.5	132.1	6.8	2.78	1.20	7.49	Primary			
TAKD042	DD	348.6	354.1	3.2	1.07	0.38	1.09	Primary			
TAKD043	DD	171.8	182.6	6.4	3.01	1.19	6.58	Primary			
TAKD044	DD	164.3	182.1	10.6	0.63	0.53	4.40	Primary			
TAKD045	DD	226.8	229.4	1.6	2.59	0.41	4.82	Primary			
TAKD046	DD	232.8	234.8	1.2	0.93	0.00	27.35	Primary			
TAKD047	DD	290.8	308.0	6.0	1.74	0.35	3.42	Primary			
TAKD048	DD	No significo	int interce	pt		·	·	· · · · ·			
TAKD049	DD	No significo									
TAKD050	DD	No significo									
TAKD051	DD	251.1	253.1	1.2	0.60	1.04	6.78	Primary			
TAKD052	DD	215.7	217.1	0.9	1.42	0.00	10.45	Primary			

Hole ID	Туре	From (m)	To (m)	Interva (m)	¹¹ Cυ (%) ²	Au (g/t)	Ag (g/t)	Си Туре		
TAKD053	DD	No significo	int interce	pt				•		
TAKD054	DD	No significo	o significant intercept							
FAKD055	DD	_	o significant intercept							
AKD056	DD	No significo		pt						
AKD057	DD	102.0	105.0	1.8	0.79	0.26	0.34	Primary		
AKD058	DD	No significo	int interce	pt						
AKD059	DD	No significo		pt						
AKD060	DD	106.9	117.9	6.7	1.83	0.81	3.71	Primary		
AKD061	DD	No significo	int interce	pt						
AKD062	DD	502.0	512.8	6.3	1.10	0.25	1.78	Primary		
AKD063	DD	3.6	32.5	26.1	3.72	0.43	2.52	Oxide		
AKD063	DD	32.8	49.0	0.1	11.74	0.83	11.83	Supergene		
AKD064	DD	13.1	35.3	20.6	0.22	0.34	0.60	Oxide		
AKD066	DD	No significo			1	1	I			
AKD067	DD	118.0	118.3	0.3	2.76	1.43	7.10	Primary		
AKD069	DD	No significa						- /		
AKD071	DD	158.7	211.0	27.5	3.21	1.24	6.14	Primary		
AKD072	DD	194.0	202.7	4.6	4.04	1.27	9.10	Primary		
AKD072	DD	216.8	231.3	7.7	1.71	0.58	2.94	Primary		
AKD073	DD	41.4	50.1	8.2	2.19	1.59	3.39	Supergene		
AKD074	DD	12.4	27.2	14.7	0.20	0.01	0.10	Oxide		
AKD075	DD	No significo			0.20	0.01	0.10	0/id0		
AKD076		113.1	121.1	5.0	3.00	1.31	9.13	Primary		
AKD077		154.2	168.9	4.4	4.65	1.59	8.75	Primary		
AKD077		125.0	130.0	1.5	1.44	0.56	0.60	Primary		
AKD078 AKD079		52.0	57.6	4.4	1.24	3.08	6.95	Supergene		
AKD077		3.8	45.4	4.4 37.4	0.54	0.16	2.19	Oxide		
AKD080		45.5	43.4 55.0	9.3	0.54	0.18	0.09			
AKD080		44.0	73.7	1.6	2.49	1.23	2.62	Supergene		
AKD081 AKD082		36.6		0.8	2.47	0.55	3.45	Supergene		
			101.1					Supergene		
AKD083	DD	92.0	109.6	6.4	2.76	0.59	3.43	Primary		
	DD	9.5	40.6	28.3	0.39	0.06	0.32	Oxide		
AKD084		46.7	61.0	0.0	2.67	0.26	1.67	Supergene		
AKD084	DD	119.0	142.8	8.4	1.61	0.66	2.21	Primary		
AKD085	DD	146.0	158.0	1.1	3.87	1.22	4.99	Primary		
AKD086	DD	No significo			0.01	0.15	0.05			
AKD087	DD	28.6	51.5	16.3	0.21	0.15	0.30	Oxide		
AKD087	DD	56.8	86.0	6.5	5.25	1.93	8.16	Supergene		
AKD088	DD	No significo								
AKD089	DD	52.0	80.0	21.8	0.36	0.04	0.23	Supergene		
AKD090	DD	120.3	127.0	1.6	1.43	0.56	0.53	Primary		
AKD091	DD	56.0	95.9	8.5	2.04	0.44	2.35	Supergene		
AKD092	DD	169.0	171.9	2.2	2.84	0.62	5.03	Primary		

Hole ID	Туре	From (m)	To (m)	Interval ¹ (m)	Cu (%)²	Au (g/t)	Ag (g/t)	Си Туре
TAKD093	DD	No significo	ant interce	pt				
TAKD094	DD	387.0	392.9	3.8	2.25	1.12	4.83	Primary
TAKD095	DD	460.3	486.0	16.0	3.74	1.13	8.43	Primary
TAKD096	DD	No significo	ant interce	pt				•
TAKD097	DD	367.3	372.0	2.8	1.02	0.50	2.78	Primary
TAKD098	DD	No significo	ant interce	pt				
TAKD099	DD	442.9	452.9	6.1	2.35	0.68	3.57	Primary
TAKD100	DD	410.0	414.8	2.7	0.66	0.19	1.22	Primary
TAKD101	DD	131.0	169.5	11.0	2.00	0.48	3.11	Primary
TAKD102	DD	134.1	136.5	1.9	5.38	1.09	16.61	Primary
TAKD102	DD	218.0	229.5	4.0	1.55	0.51	3.55	Primary
TAKD104	DD	No significo	ant interce	pt				
TAKD105	DD	83.0	114.2	1.3	6.81	0.78	3.92	Supergene
TAKD106	DD	146.5	153.4	2.2	4.15	1.40	8.13	Primary
TAKD107	DD	No significo	ant interce	pt				
TAKD108	DD	195.7	206.5	3.4	2.57	0.85	3.74	Primary
TAKD109	DD	No significo	ant interce	pt				·
TAKD110	DD	264.9	267.5	0.5	4.59	0.56	9.54	Primary
TAKD111	DD	236.2	238.6	1.5	3.41	2.12	19.26	Primary
TAKD112	DD	No significo	ant interce	pt			•	•
TAKD113	DD	123.9	133.9	7.0	1.97	0.81	8.66	Primary
TAKD114	DD	No significo	ant interce	pt	4	L.	1	
TAKD115	DD	149.8	155.0	3.6	0.81	2.64	9.20	Primary
TAKD116	DD	116.0	120.4	2.9	0.58	0.15	1.08	Primary
TAKD117	DD	171.0	174.0	0.3	0.82	0.11	1.81	Primary
TAKD118	DD	145.7	168.8	15.9	2.47	0.87	4.11	Primary
TAKD119	DD	176.3	185.7	6.4	4.68	1.28	14.84	Primary
TAKD120	DD	No significo	ant interce	pt				L - L
TAKD121	DD	159.8	163.3	2.3	1.12	0.27	2.57	Primary
TAKD122	DD	196.3	216.7	13.6	3.55	0.98	7.82	Primary
TAKD123	DD	375.9	382.1	4.9	3.47	0.62	6.29	Primary
TAKD124	DD	198.0	211.0	8.9	2.31	0.41	5.06	Primary
TAKD125	DD	151.4	174.7	16.2	1.65	0.43	2.93	Primary
TAKD126	DD	166.1	174.0	5.6	5.32	0.99	12.95	Primary
TAKD127	DD	218.6	221.3	1.9	4.53	0.76	9.86	Primary
TAKD128	DD	189.1	211.1	14.9	1.07	0.42	3.35	Primary
TAKD129	DD	219.1	235.0	11.3	2.33	0.67	3.70	Primary
TAKD130	DD	253.1	285.0	22.2	1.57	0.39	2.05	Primary
TAKD131	DD	283.3	293.7	6.1	2.01	0.41	5.87	Primary
TAKD132	DD	256.4	284.7	17.4	3.98	0.85	7.83	Primary
TAKD133	DD	323.9	327.9	2.6	12.98	3.28	39.02	Primary
TAKD134	DD	162.5	165.3	1.9	1.43	1.64	2.61	Primary
TAKD135	DD	No significo			•	1		

Hole ID	Туре	From (m)	To (m)	Interval ¹ (m)	Cu (%)²	Au (g/t)	Ag (g/t)	Си Туре
TAKD136	DD	188.0	200.1	8.1	1.10	3.02	20.15	Primary
TAKD137	DD	324.0	345.7	11.5	1.43	0.46	2.94	Primary
TAKD138	DD	266.8	267.2	0.3	1.31	0.38	8.18	Primary
TAKD139	DD	290.0	298.8	6.2	1.28	0.29	2.72	Primary
TAKD140	DD	288.7	292.9	2.9	0.88	1.29	5.43	Primary
TAKD141	DD	304.2	320.7	12.3	1.29	0.30	1.59	Primary
TAKD142	DD	323.8	344.0	14.6	2.11	0.78	5.15	Primary
TAKD143	DD	342.0	350.1	5.1	2.85	0.75	6.91	Primary
TAKD144	DD	347.8	355.9	5.9	2.77	1.18	3.06	Primary
TAKD145	DD	241.0	258.0	11.7	1.20	0.57	2.88	Primary
[AKD146	DD	284.8	296.5	8.5	1.18	0.43	2.82	Primary
[AKD147	DD	107.0	112.0	1.0	1.65	0.57	0.50	Supergene
FAKD148	DD	54.0	84.0	7.0	9.60	0.97	6.99	Supergene
[AKD149	DD	138.0	145.9	2.5	3.06	1.02	3.78	Primary
FAKD150	DD	55.0	69.0	3.1	2.72	1.09	7.83	Supergene
[AKD151	DD	3.3	42.6	32.6	1.05	0.25	0.48	Oxide
[AKD151	DD	43.0	59.0	2.7	5.49	0.55	3.86	Supergene
akd152	DD	108.8	122.4	3.0	3.27	0.58	5.65	Primary
akd153	DD	212.0	213.3	0.4	0.81	0.64	1.00	Primary
akd154	DD	100.1	110.0	0.4	3.25	2.00	6.15	Supergene
FAKD155	DD	120.3	123.9	2.7	2.20	0.38	4.53	Primary
AKD156	DD	188.0	196.9	2.7	5.53	2.68	12.64	Primary
akd157	DD	118.4	122.0	2.4	1.11	0.19	1.53	Primary
akd158	DD	195.4	210.0	4.9	3.10	1.49	4.66	Primary
AKRC001	DD	No significo	ant interce	ept				•
AKRC002	DD	No significo						
TAKRC003	RCD	9.3	44.4	31.6	0.56	0.10	0.18	Oxide
AKRC003	RCD	45.0	71.8	24.5	5.43	0.68	3.77	Supergene
AKRC004	RCD	43.0	102.2	1.2	5.17	0.78	4.84	Supergene
AKRC005	RCD	5.2	44.4	35.5	0.32	0.21	0.47	Oxide
AKRC005	RCD	46.0	71.0	0.3	1.01	0.04	0.29	Supergene
AKRC005	RCD	114.0	137.0	9.5	3.02	0.89	5.33	Primary
AKRC006	RCD	102.0	139.0	18.0	1.91	0.81	3.18	Primary
AKRC006	RCD	150.4	158.1	3.7	1.06	0.63	0.34	Primary
AKRC007	DD	No significo						1 ,
AKRC008	RCD	53.0	60.0	6.4	0.82	0.02	0.02	Supergene
AKRC009	RCD	94.0	107.0	6.7	2.15	0.27	4.56	Primary
AKRC010	RC	29.5	40.3	9.7	0.33	0.82	0.27	Oxide
TAKRC010	RC	41.0	73.0	1.1	1.94	0.92	1.93	Supergene
TAKRC011	RC	1.3	41.4	36.3	0.48	0.31	1.29	Oxide
AKRC012	RC	3.1	39.6	32.9	0.48	0.44	1.24	Oxide
AKRC013	DD	No significa			13.1.0		1 '	10,400
TAKRC014	RC	16.1	51.9	32.3	0.21	0.01	0.13	Oxide

Hole ID	Туре	From (m)	To (m)	Interval ¹ (m)	Cu (%)²	Au (g/t)	Ag (g/t)	Си Туре
TAKRC015	RCD	No significo	ant interce	pt				ł
TAKRC016	RCD	No significo	ant interce	pt				
TAKRC017	RCD	118.0	131.0	5.6	1.07	0.26	2.62	Primary
TAKRC018	RCD	No significo	ant interce	pt				
TAKRC019	RC	3.1	37.8	31.5	1.08	0.05	1.52	Oxide
TAKRC019	RC	39.0	50.0	0.1	8.69	0.75	9.21	Supergene
TAKRC020	RC	1.4	30.9	26.4	0.20	0.03	0.31	Oxide
TAKRC020	RC	61.0	68.0	5.3	1.87	0.44	3.66	Supergene
TAKRC021	RC	86.0	91.0	3.6	1.43	1.10	4.88	Supergene
TAKRC021	RC	91.0	97.0	3.0	1.73	0.63	4.38	Primary
TAKRC022	RC	122.0	126.0	2.1	4.27	1.06	8.94	Primary
TAKRC023	RCD	No significo	ant interce	pt				
TAKRC024	RC	3.9	39.0	31.5	3.72	0.35	2.88	Oxide
TAKRC024	RC	40.0	46.0	5.8	1.83	0.24	3.91	Supergene
TAKRC025	RC	3.9	35.2	28.1	0.79	0.74	1.69	Oxide
TAKRC025	RC	36.0	57.0	0.6	7.19	1.24	9.73	Supergene
TAKRC026	RC	3.2	40.0	33.0	0.42	0.07	0.42	Oxide
TAKRC026	RC	48.0	56.0	6.3	1.95	0.48	4.69	Supergene
TAKRC027	RC	64.0	68.0	3.0	3.11	0.68	6.96	Supergene
TAKRC028	RC	105.0	116.0	5.6	1.61	0.35	3.12	Primary
TAKRC029	RC	55.0	56.0	0.8	1.06	3.28	3.99	Supergene
TAKRC030	RC	62.0	72.0	7.8	4.86	0.83	7.83	Supergene
TAKRC031	RC	86.0	94.0	4.6	4.42	0.86	6.95	Primary
TAKRC032	RC	2.3	38.0	32.1	0.89	0.26	0.76	Oxide
TAKRC032	RC	44.0	72.0	1.0	1.98	1.07	6.61	Supergene
TAKRC033	RC	84.0	91.0	3.6	3.07	0.94	6.45	Primary
TAKRC034	RC	105.0	116.0	4.8	0.99	0.26	3.04	Primary
TAKRC035	RC	126.0	130.0	2.2	2.16	0.59	4.90	Primary
TAKRC036	RC	No significo	ant interce	pt	•		•	•
TAKRC037	RC	2.0	43.7	36.7	0.32	0.62	2.07	Oxide
TAKRC038	RCD	52.0	87.0	0.1	6.16	0.63	3.29	Supergene
TAKRC039	RCD	92.0	114.2	10.7	2.48	0.64	3.54	Primary
TAKRC040	RCD	45.0	62.0	0.4	7.04	1.43	10.67	Supergene
TAKRC040	RCD	81.1	110.0	9.7	1.12	0.39	1.35	Primary
TAKRC040	RCD	134.0	149.4	5.2	1.95	0.43	2.28	Primary
TAKRC041	RC	4.2	28.0	21.2	0.20	0.02	0.13	Oxide
TAKRC042	RC	44.0	56.0	11.0	0.85	0.01	0.02	Supergene
TAKRC043	RC	4.2	45.0	36.9	0.26	0.01	0.38	Oxide
TAKRC043	RC	48.0	63.0	13.9	0.46	0.00	0.05	Supergene
TAKRC044	RC	4.2	43.7	36.0	0.24	0.01	0.26	Oxide
TAKRC045	RC	No significo			1	1	1	
TAKRC046	RC	16.1	53.7	34.1	0.24	0.01	0.17	Oxide
TAKRC047	RC	No significa			12.00 .		1	1

Hole ID	Туре	From (m)	To (m)	Interval ¹ (m)	Cu (%)²	Au (g/t)	Ag (g/t)	Си Туре		
TAKRC048	RC	No significo	nt interce	ept						
TAKRC049	RC	No significo	No significant intercept							
TAKRC050	RCD	101.0	126.0	1.0	2.99	1.27	6.11	Supergene		
TAKRC050	RCD	129.0	141.3	5.4	5.70	1.52	11.20	Primary		
TAKRC050	RCD	172.6	187.0	6.3	1.06	0.46	1.82	Primary		
TAKRC051	RC	12.1	43.0	28.3	0.34	0.15	0.26	Oxide		
TAKRC052	RC	50.0	54.0	3.2	2.83	2.54	15.16	Supergene		
TAKRC053	RC	98.9	108.0	5.2	3.58	1.00	7.24	Primary		
TAKRC054	RC	45.0	51.0	4.7	2.21	3.44	12.02	Supergene		
TAKRC055	RC	68.0	78.0	7.6	1.25	0.41	3.13	Supergene		
TAKRC056	RC	No significo	ant interce	ept						
TAKRC057	RC	101.6	121.9	10.0	2.03	0.87	3.07	Primary		
TAKRC058	RC	No significo	ant interce	pt						
TAKRC059	RC	90.0	105.0	11.5	2.22	0.60	4.33	Supergene		
TAKRC060	RC	97.0	98.0	0.8	1.24	0.16	1.34	Supergene		
TAKRC060	RC	98.0	106.3	4.6	3.86	1.22	6.50	Primary		
TAKRC061	RC	56.0	58.0	1.5	1.44	6.00	11.57	Supergene		
TAKRC062	RC	81.0	84.0	2.4	2.12	1.48	5.23	Supergene		
TAKRC063	RC	92.0	112.0	15.8	1.68	0.96	5.14	Supergene		
TAKRC064	RC	36.1	38.0	1.5	1.14	0.84	9.59	Supergene		
TAKRC065	RC	74.0	81.0	5.5	2.69	2.30	9.80	Supergene		
TAKRC066	RC	98.1	103.0	2.7	1.40	0.93	7.92	Primary		
TAKRC067	RC	64.0	78.0	10.8	1.29	2.55	9.25	Supergene		
TAKRC068	RC	88.0	90.0	1.5	1.66	1.11	3.35	Supergene		
TAKRC069	RC	36.0	42.0	4.7	1.29	2.68	10.32	Supergene		
TAKRC070	RC	86.0	91.0	3.9	1.30	1.90	5.39	Supergene		
TAKRC071	RC	79.0	84.0	3.8	1.03	1.25	8.23	Supergene		
TAKRC072	RC	138.0	141.0	0.1	1.30	0.52	2.92	Supergene		
TAKRC072	RC	146.0	153.0	3.3	2.01	0.37	3.42	Primary		
TAKRC072	RC	171.0	200.0	14.5	1.13	0.32	2.19	Primary		
TAKRC073	RC	No significo	ant interce	ept	•	•		•		
TAKRC074	RC	No significo	ant interce	pt						
TAKRC075	RC	No significo		-						
TAKRC076	RC	12.0	42.2	27.1	0.55	0.06	0.53	Oxide		
TAKRC077	RC	No significo	nt interce		1			•		
TAKRC078	RC	No significo								
TAKRC079	RC	No significo								
TAKRC080	RC	4.0	26.9	20.4	0.36	0.00	0.13	Oxide		
TAKRC081	RC	No significo				I	I	·		
TAKRC082	RC	No significo		-						
TAKRC083	RC	2.9	38.0	31.8	2.88	0.75	4.37	Oxide		
TAKRC083	RC	37.0	54.0	16.8	0.94	0.00	0.09	Supergene		
TAKRC084	RC	3.1	44.9	39.0	0.47	0.12	1.11	Oxide		

Hole ID	Туре	From (m)	To (m)	Interval ¹ (m)	Cu (%)²	Au (g/t)	Ag (g/t)	Си Туре		
TAKRC085	RC	No significa	lo significant intercept							
TAKRC086	RC	No significa	nt intercep	t						
TAKRC087	RC	No significa	nt intercep	t						
TAKRC088	RC	No significa	nt intercep	t						
TAKRC089	RC	2.6	42.0	35.3	0.28	0.05	0.91	Oxide		
TAKRC090	RC	1.1	29.8	25.9	0.62	0.14	0.94	Oxide		
TAKRC091	RC	No significa	nt intercep	t						
TAKRC092	RC	No significa	nt intercep	t						
TAKRC093	RC	No significa	No significant intercept							
TAKRC094	RC	10.9	36.7	23.2	0.20	0.30	0.49	Oxide		
TAKRC095	RC	No significa	No significant intercept							
TAKRC096	RC	5.2	46.8	37.6	0.45	0.04	0.47	Oxide		
TAKRC097	RC	No significa	nt intercep	t						
TAKRC098	RC	3.1	53.0	45.0	0.40	0.23	0.75	Oxide		
TAKRC099	RC	4.0	20.2	14.7	0.27	0.02	0.10	Oxide		
TAKRC100	RC	2.0	44.7	38.6	0.35	0.08	0.43	Oxide		
TAKRC100	RC	45.0	56.0	10.7	1.31	0.01	0.02	Supergene		
TAKRC101	RC	No significa	nt intercep	t						
TAKRC102	RC	No significa	nt intercep	t						
TAKRC103	RC	No significa	nt intercep	t						
TAKRC104	RC	No significa	nt intercep	t						
TAKRC105	RC	No significa	nt intercep	t						
TAKRC106	RC	No significa								
TAKRC107	RC	No significa	nt intercep	t						
TAKRC108	RC	No significa	nt intercep	†						
TAKRC109	RC	No significa	nt intercep	t						
TAKRC110	RC	No significa	nt intercep	t						

¹ Drill hole true width lengths are between 60% to 85% of reported interval lengths.

² Assay intervals for supergene and primary mineralisation have been reported at a 0.5% Cu cut-off grade with a maximum internal dilution of 3.0m. Reported assay intercepts for oxide mineralisation have been reported at a 0.25% Cu cut-off grade with a maximum internal dilution of 3.0m.

APPENDIX C:

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data Constellation drill program

Criteria	Commentary							
Sampling techniques	 RC Program All samples have been collected from reverse circulation (RC) drilling. The supervising geologist nominated, based on visual information, whether to collect a 1m sample or a 4m composite sample. 1m samples were collected directly off the cyclone splitter. 4m composites were collected by "spearing" the bulk sample collected for each metre. Where any 4m composite sample returned anomalous assay data, elevated in mineralisation, the 1m samples from each of the composite were sent for analysis. The intent is to ensure samplea that are within or proximal to mineralisation are sampled at 1m intervals. Blanks, Standards and Field duplicates were used at a frequency rate of 1:20 per sample. Field Duplicates are inserted at a low rate (less than 1:60) and are limited to the RC holes; therefore, they are not representative of the complete deposit. Field duplicate samples must be selected from diamond holes at a rate of 1:20 for future MREs. Samples were sent to an independent and accredited laboratory (ALS). Diamond Program All samples were collected from the diamond drill core. Samples were taken across intervals with visible sulphides, inclusive of 30m either side of the lithological boundaries. Samples collected fell between 0.2m to 1.4m in length. Sample lengths 							
	 a consideration lithologic bounds. 9. Company quality control samples were inserted at the following rates: Blanks 1:60 CRM 1:20 Filed duplicates – there are no duplicates of diamond core 							
Drilling techniques	 RC Program 1. Drilling results are reported from RC samples. 2. Drillholes completed use a 5-inch diameter drill bit. Diamond Program 							
	 Drilling results are reported from diamond drill core. Drillholes completed are either drilled at a HQ diameter or a HQ and NQ diameter. Drillholes TAKD001 and TAKD002 were drilled via HQ and NQ diameter. Drillholes from TAKD003 onwards were drilled via HQ diameter core. 							
Drill sample recovery	RC Program 1. 1,633 samples were analysed to determine the % mass of sub- sample from the total interval. This shows that 55% of samples were							

Criteria	Commentary
	 less than 5% of the total mass. An average SG factor of 2.8 was used. 2. Sample recoveries from the RC drill program is on average greater than 90%. An assessment of recovery was made at the drill rig during drilling and has been determined via visual observations of sample return to the cyclone. 3. Water has been intersected in a small number of drillholes. Those holes reporting water were halted, and the completion of those holes utilised a diamond tail. 4. Samples collected from holes reporting water are considered representative. 5. No sample bias was observed. Diamond Program 1. An analysis of 7,708 diamond core samples shows that on average 97.3% of the expected mass was recovered. 2. Core recoveries are recorded by the drillers on site at the drill rig. Core recoveries are recorded and verified by an Aeris Resources field technician and/or geologist. 3. The diamond drill core was pieced together during the core orientation process. During this process the depth intervals were recorded on the core and cross-checked against the downhole depths recorded by drillers on the physical core blocks in the core trays. 4. Historically the core recoveries have been very high across each of the Company's known deposits. 5. All drillholes completed at the Constellation deposit report good core recoveries through the mineralised horizon. 6. When core loss has been experienced across the Constellation deposit it generally occurs within fault structures. The fault structures are interpreted to post date mineralisation and either contain no mineralisation or minor immaterial amounts of remobilised chalcopyrite.
Logging	 All RC chips and diamond drill core has been logged by an Aeris Resources geologist or a fully trained contract geologist under Aeris supervision. Diamond core and RC chips are logged to an appropriate level of detail to increase the geological knowledge and further develop the geological understanding at the Constellation deposit and greater regional relationships. RC Program Each 1m sample interval was geologically logged, recording
	 lithology, presence/concentration of sulphides and alteration. All geological data recorded during the logging process is stored in Aeris Resources' AcQuire database. Chip trays are stored onsite in a dry and secure facility. Diamond Program All diamond core has been geologically logged, recording
	lithology, presence/concentration of sulphides, alteration, and structure.

Criteria	Commentary
	 All geological data recorded during the core logging process is stored in Aeris Resources' AcQuire database. All diamond drill core was photographed and digitally stored within the Company's network. The core is retained in core trays after all sampling, labelled with downhole meterage intervals and drillhole ID and stored in the Company's designated core storage area. The stored core location is recorded and digitised within the Company's computer network.
Sub-sampling techniques and sample preparation	 RC Program All samples have been collected consistently with the same method. 1m samples are collected from the cyclone splitter. 4m samples have been collected by spear sampling. The on-site geologist determined the 1m samples, or the 4m composite samples, were collected for laboratory analysis. Replicate samples have been collected using spear sampling method. Standards and blanks are inserted at a frequency rate of 1:20. A 5% sub-sample (~2kg for a 1m interval) is considered appropriate for the style of mineralisation and grain size of the material being sampled. Diamond Program
	 All samples are collected in a consistent manner. Samples are cut via an automatic core saw, and half core samples are collected between sample lengths from 0.2m and a maximum length of 1.4 metres. No field duplicates have been collected, however, ½ core is retained if further testing may warrant it. The sample size is considered appropriate for the style of mineralisation and grain size of the material being sampled.
Quality of assay data and laboratory tests	 RC Program All samples have been sent to ALS Laboratory Services (ALS) at their Orange facility for sample preparation. Samples are split via a riffle splitter. A ~3kg sub sample is collected and pulverised to a nominal 85% passing 75 microns. Elements reported via ME-OG46 (~70%) and ME-OG62 (~30%) include copper, silver and zinc. Gold assaying was completed via a 30g fire assay charge via Au-AA22 (~94%) If a gold assay exceeds 1g/t Au, a second 50g sample is assayed via Au-AA26 (6%), which is a more accurate analytical method for gold assays exceeding 1g/t Au. The company CRMs used at various time periods across both RC and DD programs were OREAS-930, OREAS-152b, OREAS-20a, OREAS-501d, OREAS-502c, OREAS-504b, OREAS-504c, OREAS-502d, OREAS-626, OREAS-628, OREAS-629, OREAS-920 and OREAS-21e.

Criteria	Commentary
	 The lab QC samples make up at least 20% of total samples for each workorder. All lab QC certificates are downloaded and stored on a file server. Diamond Program
	 All samples have been sent to ALS Laboratory Services at their Orange facility. TAKD001 to TAKD010: Samples are analysed by a 3-stage aqua regia digestion with an ICP finish (suitable for Cu 0.01-1%) – ALS method ME-ICP41. Samples with Cu assays exceeding 1% are re-
	 submitted for an aqua regia digest using ICP-AES analysis – ALS method ME-OG46 (suitable for Cu, 0.01-50%). TAKD011 to TAKD100: Cu and Ag assays reported from TAKD011 were assayed via the ALS method ME-OG46 only (suitable for Cu, 0.01-50%).
	 TAKD101 to TAKD170: Samples within the main zone were assayed via the ALS method ME-OG46 only (suitable for Cu, 0.01-50%). Samples within the stand-up zone are analysed by a 4-stage 'near-total' digestion with an ICP-MS finish (suitable for Cu grades between 0.02 – 1% Cu) – ALS method ME-MS61. If a sample records a Cu grade above 1%, a second sample will be re-submitted for
	 another 4-stage digest with ICP finish using ALS method Cu_CuOG62 (0.001 - 50% Cu). All samples (TAKD001 - TAKD170) are analysed for Au utilising a nominal 50g fire assay fusion with an AAS finish (suitable for Au grades between 0.001-10ppm) - ALS method Au-AA22. If a sample records an Au grade above 1ppm a second sample will
	 be re-submitted for another 50g fire assay charge using ALS method AuAA26 (0.01-100ppm). 7. QC samples (standards) make up at least 20% of the total samples for each work order. All QC certificates are downloaded and stored on a file server. The frequency rate of QAQC sampling was 1:10 throughout the mineralisation zone (+30m above and below the zone), and 1m sample every 10m for the remainder of the hole was retained for QA/QC at a nominal 5% standard/blank rate.
Verification of	RC and Diamond Programs
sampling and assaying	 Logged drillholes are reviewed by the logging geologist and a senior geologist. All geological data is logged directly into Aeris Resources' logging computers following the standard Aeris Resources geology codes. Data is transferred to the AcQuire database and validated on entry. Data validation of sampling is built into to the acQuire sample
	 Data validation of sampling is boin find to the acquire sample logging object (interval length ranges, CRM lookups, date sampled etc). Despatches are tracked and validated with acquire objects and the acquire database schema Each work order is reviewed and accepted by a site geologist.
	Once the assays are accepted the hole is locked so that no unauthorised changes may take place. 3. No Twinned holes have been completed.

Criteria	Commentary
Location of data points	 Drill hole collar locations have been collected by an Aeris mine surveyor utilising a RTK Leica GPS GS16, with an accuracy of approximately +/- 8mm horizontally and +/-15mm vertically. Mine site surveyors collect drill hole locations in Map Grid of Australia 2020 zone 55 (MGA2020). The quality and accuracy of the drill collars are suitable for obtaining quantitative results. Downhole surveys are completed by the drill contractor. RC drillholes TAKRC001 – TAKRC003 were surveyed using a Reflex Multishot camera. Survey information is taken at the completion of each hole at 20m or 30m intervals. All other RC holes were reported using a Reflex gyroscopic tool, which measures azimuth and dip orientations every 30m or at shorter intervals if required. Down hole surveying of diamond drillholes are completed using a Reflex gyroscopic tool measuring azimuth and dip orientations every 30m, or shorter intervals if required.
Data spacing and	RC Program
distribution	 The drillholes have been designed to test for mineralisation within the oxide and supergene mineralised horizons. RC drilling completed at the Constellation deposit was designed initially on a nominal 40m x 40m drill pattern. Drillholes with logged visual sulphides have been followed up with infill RC holes at a nominal 25-30m x 25-30m spacing. A 25-30m x 25-30m nominal drill spacing over the oxide and supergene horizon is considered sufficient to understand the spatial distribution of copper mineralisation for conversion to a Mineral Resource.
	Diamond Program
	 Diamond drilling has been used to target mineralisation below the RC drill program within and surrounding the mineralised system. Drilling completed at the Constellation deposit was initially designed on a nominal 80m x 80m drill pattern to efficiently define the extents of the mineralised system at increasing depths. An extensive in-fill drill program at a 40m x 40m nominal drill spacing has been completed down to the -200mRL level. A 40m x 40m drill spacing is considered sufficient to understand the geology and spatial distribution of mineralisation to an Indicated Mineral Resource category. Below -200mRL, all drilling has been completed via diamond drilling. The drill spacing varies from 80m x 80m to ~100m x ~160m.
Orientation of data	RC and Diamond Programs
in relation to geological structure	 All drillholes are designed to intersect the target at, or near, right angles to the interpreted mineralised system. Geological interpretation has defined a sub-vertical sulphide body along the northern margin of the deposit. Initial drillholes through the sub- vertical body were drilled sub-parallel to the mineralised system. Diamond drilling has since targeted the sub-vertical body with flatter holes, providing a greater understanding of its geometry.

Criteria	Commentary
	 A majority of drillholes completed have not deviated significantly from the planned drillhole path. A limited number of RC drillholes intersected water within the mineralised zone and were abandoned. Those holes have been extended via diamond drilling. Drillhole intersections through the target zone(s) are not biased with the exception of several sub-vertical holes through the sub-vertical sulphide body. There are enough flatter holes through the sub-vertical body to ensure the dimensions are appropriate and realistic based on the drill spacing.
Sample security	RC and Diamond Programs
	 Drillholes sampled at the Constellation deposit are not be sampled in their entirety. Sample security protocols follow current procedures, which include: samples are secured within calico bags and transported to the laboratory in Orange, NSW via a courier service or with Company Personnel.
Audits or reviews	RC and Diamond Programs
	 Data is validated when uploaded into the Company's acQuire database, as stated above, as part of the QAQC review of assay importing by correlating the standards and blanks within +/-2 and 3 standard deviations. No formal audit has been conducted.

APPENDIX D:

Section 2 Reporting of Exploration Results

Constellation Deposit

Criteria	Commentary
Mineral tenement and land tenure status	 The Aeris Resources Regional Tenement package is located approximately 45km northwest of the township of Nyngan in central western New South Wales. The package consists of 8 Exploration Licences and 4 Mining Leases. The mineral and mining rights are owned 100% by the Company's subsidiary, Tritton Resources Pty Ltd. The Constellation deposit is located within EL6126, EL8084 and EL8987. All three exploration licences are in good standing and no known impediments exist.
Exploration done by other parties	 There has not been a significant amount of exploration completed over and around the Constellation deposit. Burdett Exploration NL held the ground between May 1971 – May 1972 however conducted no work over the area. Nord Pacific Limited (Nord) held the ground under EL3930 between 1991 – 2002 and identified several GeoTEM EM anomalies further north beyond the Constellation deposit. Nord completed two lines of surface geochemistry sampling over each GeoTEM EM anomaly. No further work was completed following the geochemical sampling

Criteria	Commentary
	program. The Geochem results did not warrant any further work. No on- ground exploration has been completed over the area since 2002.
Geology	 Regionally, mineralisation is hosted within early to mid-Ordovician meta sediments, forming part of the Girilambone group. Mineralisation is hosted within a lower greenschist facies, ductile deformed pelitic to psammitic sediments, and sparse zones of coarser sandstones. Sulphide mineralisation within the Aeris Resources tenement package is dominated by banded to stringer pyrite – chalcopyrite, with a massive pyrite-chalcopyrite unit along the hanging wall contact. Alteration assemblages adjacent to mineralisation is characterised by a silica sericite hanging wall and an ankerite footwall, nearby a notable graphitic unit and carbonate representative strata.
Drillhole information	 All drillhole collar details used to inform the Constellation Exploration Target have been disclosed previously and can be referenced from the Aeris website.
Data aggregation methods	 Assays included in intercept calculations are weighted by interval width. Mineralised intercepts for Cu are averaged within a contiguous interval above a specified Cu cut-off grade (0.25% or 0.50%) with a maximum of 3m of internal dilution
Relationship between mineralisation widths and intercept lengths	 Drillholes are designed to intersect the target horizon across strike at or near right angles. The mineralised domains trend north-east and dip gently to the south- east. Most drilling completed at the Constellation deposit is oriented 260° (magnetic azimuth) and dipping between 60° and 70°. The hole designs are intended to intersect the mineralised system close to right angles and drill intersections represent true thicknesses (or close to). A sub- vertical copper lens was interpreted in 2022 along the northern margin of the deposit. Initial drilling through the subvertical body is subparallel. Shallow angled diamond drillholes drilled to the north have been completed, providing more optimal drill intersections to assist with understanding the geometry of the mineralised system. No down-hole thicknesses from drill-hole intersections through the sub-vertical body are referenced in this report.
Diagrams	1. Relevant diagrams are included in the body of the report.
Balanced reporting	 The reporting is considered balanced, and all material information associated with the Mineral Resource Estimate is disclosed.
Other substantive exploration data	1. There is no other relevant substantive exploration data to report.
Further work	 Work at Constellation will now focus on the completion of the feasibility study on an open pit and underground operation.

APPENDIX E:

Section 3 Estimation and Reporting of Mineral Resources Constellation Mineral Resource

Criteria	Commentary
Database integrity	 All assay results are logged against unique sample numbers. A sampling sheet detailing sample numbers and core / RC intervals is completed before sample collection. During the sampling process, each sample interval is cross-referenced to the sample number and checked off against the sampling sheet. Pre-numbered bags are used to minimise errors. Assay data is received via email in a standard electronic format and verified against the acQuire database. Data validation and QAQC procedures are completed by staff geologists. Geology logs are validated by the core logging geologist. Assay data is not uploaded to the corporate acQuire database until all QAQC procedures have been satisfied.
Site visits	 Brad Cox (Aeris Resources – General Manager Geology) has made several site visits. Site visits included inspecting Constellation RC drill chips and diamond drill core.
Geological interpretation	 chips and diamond drill core. 1. The confidence in the Constellation geology model is reflective of the resource classification, i.e. confidence in the geology is a key driver determining resource classification. The geological interpretation is based on 264 drillholes within the Constellation deposit. 2. The geological understanding of the mineralised system within the reported Mineral Resource is, for the most part, well understood. Copper mineralisation forms in three discrete horizons: 1) oxide domain (hydroxide copper minerals), supergene (chalcocite) and primary (chalcopyrite). The mineralised system forms a tabular body striking NNE-SSW and dipping gently to the SE. Sections of the mineralised system are intensely deformed and folded. This is apparent along the northern margin of the known deposit. The deposit forms a sub-vertical, elongated E-W trending zone. 3. The data used for geological interpretation is based on drillhole data. There are no significant assumptions made other than the mineralised system extends between drillholes along the interpreted orientation. Mineralisation is easily visible from the host turbidite sequences. The geometry of the mineralised system is understood at drill spacings of up to 80m x 100m. 4. Estimation domains used for the resource estimate are based on interpreted geology defined from drill core. Cu estimates are constrained within grade shells at 0.1% copper (within the oxide domain), 0.3% copper (supergene and primary domains). The supergene domain and upper primary sulphide domain are based on copper sequence assay data. The supergene domain for
	 samples below the base of weathering reported ≥15% cyanide soluble copper and ≤80% acid soluble copper. The upper primary sulphide domain was based on <15% cyanide soluble copper and <10% acid soluble copper. All wireframes were generated in Maptek Vulcan and Leapfrog Geo 3D modelling software. 5. Au and Ag were estimated in different domains based on

Criteria	Commentary
	 economic cutoffs of 0.15g/t for Au and 30g/t for Ag. The domains were further divided into the copper speciation profiles for consistency with the copper models and resource reporting. Au and Ag domains were created using the Leapfrog Geo software. 6. Mineralisation remains open at depth below the Mineral Resource.
Dimensions	 The Constellation mineralised system is tabular in nature with an overall down-dip length of 1,100 metres with mineralisation still open at depth. Mineralisation begins from 4 metres below surface (~160mRL). The mineralised lodes vary in thickness, averaging from 1-25m. The main sulphide body dips between 30° - 35° SE with a strike extent typically between 200m to 300m. The sub-vertical sulphide body along the northern margin of the deposit trends eastwest with a thickness typically ≤10m.
Estimation and modelling techniques	 Ordinary kriging was used to estimate all variables (Cu, Au, Ag, S and Fe). Ordinary Kriging is an appropriate grade interpolant for this style of mineralisation. Vulcan software was used for explanatory data analysis, variography and grade estimation. Top-cut analyses were completed on all elements / estimation domains using a combination of statistical (histograms and log normal probability plots) and spatial location of grade trends.
	 Estimation was performed in 2 passes depending on the drill coverage and dimensions of the estimation domain. Estimation pass 1 was generally set at 50-60m (major and semi-major) x 20-30m (minor). Pass 2 search dimensions were generally set at 60-100m (major and semi-major) x 30-50m (minor).
	 Other variables estimated included Au, Ag, Fe, S, and bulk density. Kriging neighborhood analysis was performed to optimise estimation search and sample selection parameters for each element.
	 For the definition of reasonable prospects of eventual economic extraction (RPEEE) and mine optimisation studies, the copper sequential data were estimated in the block model, including the percentage of acid-soluble, cyanide-soluble, and residual copper.
	 The parent block sized used for the updated estimate was 10m (E) x 10m (N) x 5m (RL) with sub celling down to 1m (E) x 1m (N) x 1.25m (RL). The cell size takes into consideration drill spacing and grade variability in different orientations.
	6. No assumptions have been applied to the model for a selective mining unit.
	7. The progression from host rocks without sulphides to host rocks containing sulphides is often an abrupt transition within several metres. All variables to be estimated are associated with the sulphide package which is generally quite discrete. Visually and geologically there is a strong correlation between the variables to be estimated. Statistical analysis presented evidence of strong correlation between iron, sulphur and bulk density. Therefore, the sulphur domains were used for estimation of iron and density.
	 The distinction between background Cu and Cu associated with mineralisation was defined through a combination of geology and textural logging, as well as population distributions derived from log probability plots. From this, a 0.1% (oxide) and 0.3% (supergene and

Criteria	Commentary
	 primary) Cu cut-off was selected to define the bounding Cu estimation domain. Domain boundaries were treated as hard domains based on boundary analysis between the adjacent domains. Au and Ag domains were defined at lower cutoffs based on statistics and log probability plots. Au mineralisation was defined above 0.15g/t, and silver at 0.3g/t. Further domaining was applied in relation to weathering. Economic composites of 5m intervals were generated in the oxide domain and 3m composite intervals in the fresh weathering domain. 9. Sulphur domains were generated at a lower cutoff of 0.3% as well as 5m economic composites in the oxide weathering and 3m composites in the fresh weathering domain. 10. Drillhole data from each variable was reviewed within each estimation domain to determine whether top cuts are required. Top cuts were applied based on histogram and log probability distributions and spatial location of composite data. All estimates within each estimates mater and spatial location were generated, showing block estimates and composite data for each estimated variable.
Moisture	1. Tonnages are estimated on a dry basis.
Cut-off parameters	 The reported Mineral Resource is reported at varying NSR cut-off values, reflecting the potential mining method (open pit or underground) and the processing stream (oxide – heap leach, supergene/primary sulphide – flotation). NSR reporting cut-off values are based on relevant project study operational costs and pricing scenarios. Application of a nominal lower limit of breakeven economics from these costs is considered as the reasonable prospects for eventual economic extraction under current economic modelling. The reported open pit Mineral Resource is reported within a Revenue Factor 1 pit optimisation shell generated using the Maxflow algorithm. Both the optimisation and the Mineral Resource assumed metal prices of USD\$10,337/t Cu, USD\$2,797/oz Au and USD\$33.67/oz Ag metal prices at an exchange rate of AUD:USD 0.682. Within the reporting pit shell copper oxide mineralisation is reported at a \$18/t NSR value. The oxide material would be processed via a heap leach method. Supergene and primary copper mineralisation within the reporting pit shell is reported at a \$59/t NSR value. The material would be processed at the Tritton processing facility. Underground Mineral Resource is reported at a \$108/t NSR from stope optimisation wireframes. The different cut-off grades used are based on different processing costs. A heap leach processing option is assumed for the oxide domain. Heap leaching has been a successive

Criteria	Commentary
	processing method used previously at the nearby Murrawombie deposit in the 1990s to early 2000s. Processing of the supergene and primary sulphide domain is assumed to be via the existing Tritton processing plant (flotation).
Mining factors or assumptions	 Copper mineralisation at the Constellation deposit occurs from 4 5m below surface. It is assumed the deposit would be mined via conventional open pit and underground open stope mining techniques.
Metallurgical factors or assumptions	 Metallurgical recovery assumptions for copper are based off lak test work completed on Constellation composite samples across the mineralised horizons. Oxide recoveries are based off bottle rol and column leach tests results. Supergene and fresh recoveries based off flotation results, noting that flotation results exceeding Tritton historical averages have been conservatively reduced to the Tritton historical average. Metallurgical recovery assumptions are: Oxide 100% (of acid soluble assay) Supergene 94.5%
Environmental factors or assumptions	 No environmental factors or assumptions have been incorporated into the reporting of the Mineral Resource estimate for the Constellation deposit.
Bulk density	 A total of 13,382 bulk density measurements have been collected from diamond drill core samples at the Constellation deposit. Bulk density measurements have been collected within the supergene and primary copper domains. Bulk density measurements within the weathered horizon are located outside of the mineralised package.
	 Bulk density values were measured using the Archimedes Principle Method (weight in air versus weight in water). Varying forms o silicification are present throughout the mineralised system, and porosity associated with the turbidite host sediments is negligible Vugs have been noticed within the drill core on rare occasions Technically the bulk density determination method does no account for the presence of vugs. Given they have only beer observed on the rare occasion and are not correlated to specific zones they are not considered to represent a material problem with current bulk density determinations. Bulk density has been estimated in the block model using composite data at 1m intervals. For material outside the mineralised domains an average density value for the host material
Classification	 has been assigned based on the density of unmineralised turbidite sediments, 2.47 in weathered and 2.70 in fresh profiles. 1. Classification of the resource estimate has been guided by
	confidence in the geological interpretation and drill density. The Constellation Mineral Resource has been classified as Indicated and Inferred.
	2. The drill and input data density is reasonable in its coverage for this

Criteria	Commentary
	 style of mineralisation and estimation techniques to allow confidence for the tonnage and grade distribution to the levels of Indicated and Inferred. 3. The Constellation geology interpretation/model and resource estimate appropriately reflect the competent person's understanding of the geology and grade distributions at the Constellation deposit. 4. Indicated Mineral Resource is reported from areas with a drill density up to 40m x 40m. The geological interpretation is consistent between drill section and grade distributions are well understood. Inferred Mineral Resource is based on a nominal drill spacing up to 80m x 100m, providing a conceptual understanding of the geological framework and grade distribution within the estimation domain.
Audits or reviews	 External reviews and audits have not been conducted on the Constellation Mineral Resource estimate. The current geological interpretation and estimation domains have been peered reviewed internally within the company. No fatal flaws or significant issues were identified.
Discussion of relative accuracy/ confidence	 The models have been validated visually against drilling and statistically against input data sets for each estimation domain. The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC code. The Indicated Mineral Resource is appropriate for mine level evaluation. The Inferred Mineral Resource is suitable for an understanding of the global estimate and broad grade trends beyond mine level scale. No mining has taken place at Constellation and hence no reconciliation data is available for comparison and forward projections of tonnage/grade performance from the Mineral Resource model.