

"West Mali Project – Significant & highly prospective landholding in major gold producing district in Mali"

"Agboville Gold Project – Maiden drill testing of a major gold anomaly in a highly prospective terrain returns positive results"

"Focused on delivering shareholder wealth through the identification, exploration & development of significant mineral properties in Africa"

CORPORATE DIRECTORY

Non-Executive Chairman Evan Cranston

CEO & Exploration Manager Glen Edwards

Executive Director Steve Parsons

Non-Executive Director Tolga Kumova

Company Secretary & CFO Michael Naylor

CONTACT DETAILS

Principal & Registered Office Suite 3, Level 3 24 Outram Street West Perth WA 6005 E: admin@african-gold.com

Significant High-Grade Gold Results in Multiple Holes from Maiden Drilling, Sitakili Permit, Kedougou-Kenieba Inlier, West Mali

HIGHLIGHTS

African Gold Limited is pleased to announce results of the recently completed maiden drill programme of 1,980 metres RC drilling designed to provide a preliminary assessment of the Kirchon and Grand Filon Prospects on the Sitakili Permit in West Mali. The Permit is located within the prolific gold producing Kedougou-Kenieba Inlier and within 20 km's of the regionally significant Senegal Mali Shear Zone known to host >45 Million oz of gold deposits.

• Results are extremely encouraging with all 16 holes returning significant shallow anomalous gold intercepts including:

9.0 m @ 5.17 g/t gold from 54.0 m in 19SIR013
3.0 m @ 3.07 g/t gold from 40.0 m and
2.0 m @ 4.71 g/t gold from 59.0 m in 19SIRC006
6.0 m @ 3.35 g/t gold from 53.0 m in 19SIRC009
6.0 m @ 5.80 g/t gold from 126.0 m and
3.0 m @ 2.34 g/t gold from 117.0 m in 19SIRC010
6.0 m @ 1.97 g/t gold from 42.0 m in 19SIRC011

- Mineralisation is open in all directions drilling undertaken was shallow and on broad spacings.
- Follow up drilling at Sitakili is expected to commence in the coming Quarter.
- In addition a maiden shallow reconnaissance drilling programme is also being undertaken at the nearby Bourdala, BouBou and Tintinba-Nord Permits. **Results are anticipated over the coming weeks**.
- Preliminary surface geochemical programs were conducted during Q4 2019 with **results expected in the coming weeks** to define drill further drill ready targets.

African Gold Limited's Exploration Manager and Chief Executive Officer Mr Glen Edwards stated: "We are extremely encouraged by the multiple high-grade gold results from this initial drill program at our new Sitakili Permit in West Mali.

This region of the Kedougo-Kenieba Inlier is host to a number of world class gold mines and we are fortunate to have acquired a significant landholding in this highly sort after region.

These first pass drill results point towards what could be a significant gold system with gold mineralisation open both along strike and down dip.

We look forward to further results from our recent drilling and geochemical programs in the coming weeks and are already planning follow up drilling based on these results".

Figure 1: African Gold Project Locations (orange) on geology and significant gold deposits in West Africa.

Figure 2 : Kedougou-Kenieba Inlier location of permits on geology and magnetic image showing historical drill results and areas where work is currently being undertaken. This release relates to results from RC drilling conducted during November-December 2019 at Sitakili only.

EXPLORATION

Western Mali Gold Permits – The World Class Kedegou Kenieba Inlier

Eight of the nine permits in Mali are located within the Kedegou Kenieba Inlier in Western Mali. The remaining permit is located along strike from the Syama Gold Mine in southern Mali. With all, except one, of the west Mali permits being located on or in the hanging wall to the Senegal Mali Shear Zone (SMSZ). The remaining permit is located to the east of the Mali Transcurrent Fault.

<u>Sitakili Permit:</u> This ASX release relates to results from maiden drilling conducted during November-December 2019 on the Sitakili Permit within the Kedegou Kenieba Inlier Western Mali.

A total of 16 RC holes for an aggregate of 1,980 metres were drilled. Holes were designed to provide a preliminary assessment of a portion of the Kirchon and Grand Filon prospects.

Three main mineralised corridors are currently being mined by artisanal miners namely Djimissi, Kircho/Makandja and Grand Filon. The artisinal miners appear to focus entirely on alluvial gravels and on quartz lode systems.

The objective of this program was to target systematically testing a portion of what appears to be a very large system and looking beyond the obvious known gold lodes outcropping in artisanal workings as well as defining areas of potential thicker and higher-grade shoots within these known lodes, broader disseminated zones and different orientations and structural styles to understand mineralisation.

Minor historical drilling¹ at Sitikali Permit returned anomalous intercepts of 4 m @ 28.9 g/t gold from 129.0 metres and 9 m @ 5.9 g/t gold from 95.0 metres at Grand Filon Prospect and 6.6 m @ 115.5 g/t gold at the Kirchon prospect.

Grand Filon Prospect - all 4 holes drilled by African Gold over a strike length of 550 metres eastern lode (holes 9 and 10 on section) intersected mineralisation typically, but not always associated, with quartz veining and quartz feldspar porphyries (exception of hole 8) within a package of sheared meta-peltites, meta-arenites and meta-wackes. Mineralised quartz veins are typically associated sulphides while mineralized selvedges and zones not associated with quartz veins are associated with variable degrees of silica \pm sericite \pm carbonate \pm heamatite \pm sulphide alteration.

All mineralized zones appear to remain open along strike and down dip.

Results include:

- 19SIRC008 1.0 m @ 1.34g/t gold from 82m
- 19SIRC009 1.0 m @ 3.11g/t gold from 37m
- 19SIRC009 6.0 m @ 3.35g/t gold from 53m including 3.0 m @ 5.49 g/t Au
- 19SIRC010 3.0 m @ 2.34g/t gold from 117m
- 19SIRC010 6.0 m @ 5.8g/t gold from 126m including 3.0 m @ 10.77g/t Au and 1.0m @ 1.88g/t Au
- 19SIRC011 6.0 m @ 1.97g/t gold from 42m
- 19 SIRC011 1.0 m @ 1.29g/t Au

Details of intercepts, collars and individual assays over >0.1g/t gold included in tables 1, 2 and 3 below.

Kirchon / Makandja Prospect - all 12 holes drilled over a strike length of 2,500 metre of the 3,600 metres mapped (defined by artisanal mining) mineralised lode system intersected mineralisation.

The eight holes were drilled into the Eastern lode system intersected multiple zones of mineralization typically, but not always, associated with quartz veining and quartz feldspar porphyries within a package of sheared meta-peltites, meta-arenites and meta-wackes. Mineralized quartz veins are typically associated sulphides while mineralized selvedges and zones not associated with quartz veins associated with variable silicia \pm sulphies \pm sericite \pm carbonate alteration.

Mineralisation intersected in the 3 holes targeting the Central Structure and the 1 hole targeting the Western / Makandja Structure were sometimes but not always associated with quartz veining within sheared and altered sediments but no porphyries.

Eastern Structure

-	19SIRC001	1.0 m @ 1.25g/t from 0 m and
		7.0 m @ 0.74g/t Au from 64 including 1.0 m @ 2.93g/t Au and
		1.0 m @ 3.03g/t Au from 48 m
-	19SIRC002	14.0 m @ 0.63g/t Au from 68 m Including 1.0 m @ 3.05 g/t Au and 1.0 m @ 1.18g/t Au
		5.0 m @ 0.65g/t Au from 69 m including 1 m @ 1.33 g/t Au
-	19SIRC004	5.0 m @ 0.56g/t Au from 54 m including 1 m @ 1.10 g/t Au
-	19SIRC006	3.0 m @ 3.07g/t Au from 41 m including 2 m @ 4.23 g/t Au and
		2.0 m @ 4.71g/t Au from 49 m
-	19SIRC007	5.0 m @ 0.77g/t Au from 77 m including 1.0 m @ 1.65g/t Au and 1.0 m @ 1.31g/t Au
-	19SIRC013	9.0 m @ 5.17g/t Au from 54.0 m including 3.0 m @ 13.48 g/t gold and
		5.0 m @ 1.54g/t Au from 108m

Central Structure

- 19SIRC014 1.0 m @ 1.33g/t Au from 51.0m and
- 5.0 m @ 0.81g/t Au from 53.0m
- 19SIRC015 5.0 m @ 1.23g/t Au from 55.0 m

Western / Makandja Structure

19SIRC016
 3.0 m @ 0.59 g/t Au from 3 m and
 3.0 m @ 1.54 g/t Au from 7 m and
 4.0 m @ 0.61 g/t Au from 12 m and
 1.0 m @ 1.13g/t Au from 18 m and
 1.0 m @ 8.12g/t Au from 24 m and

Eastern Structure hole 19SIRC013 remains open along strike to the north and down dip. Hole 19SIR007 is located 200 metres to the south of hole 13 and returned 5.0 m @ 0.77 g/t Au from 77.0 m.

Bourdala, BouBou and Tintinba-Nord Permits – maiden drilling has also recently been undertaken on the nearby Bourdala, BouBou and Tintinba-Nord Permits. Final results for RC and AC drilling have yet to be received. Once these and results from recent geochemical programs conducted during Q4 2019 are available follow-up programs will be designed. Follow up drilling at Sitakili Permit is expected to commence Q2 2020.

Figure 3: Sitakili Permit RC drilling November – December 2019, Location of historical and recent holes. Significant results from A1G drill campaign shown on image of area.

Figure 4: Grand Filon Prospect – schematic cross section through holes 19SIRC009 & 010

Figure 5: Kirchon Eastern Structure – schematic cross section through holes 19SIRC013

Current work Program

The company is awaiting results for soil/termite/rock chip sampling programs conducted during October-November 2019 on the BouBou, Diokeba Sud, Tintinba Nord, Bourdala and Samanafoulou permits.

In addition to this the company is awaiting results from a 12 holes 1,980 metre RC program drilled to test two prospects on the BouBou/Bourdala permits and results from a 3,050 metre aircore program designed to test structural/magnetic/geological/geochemical targets on the BouBou, Bourdala and Tintinba Nord permits.

Results will be made available when received and validated.

For and on behalf of the Board

Mr. Glen Edwards Chief Executive Officer and Exploration Manager T: +61 8 6425 8007 E: admin@african-gold.com

Notes:

- 1 Refer ASX announcement on 5 September 2019. African Gold is not aware of any new information or data that materially affects the information included in the said announcement.
- 2 Refer ASX announcement on 4 July 2019. African Gold is not aware of any new information or data that materially affects the information included in the said announcement.

Competent Persons Statements

Information in this announcement that relates to commencement of drilling is based on and fairly represents information and supporting documentation prepared by Mr Glen Edwards. Mr Edwards is a full-time employee of African Gold Limited and is a member of the Australian Institute of Geoscientists (AIG) and Society of Economic Geologists (SEG). Mr Edwards has sufficient experience relevant to the styles of mineralisation and types of deposits under consideration and to the activity which they are undertaking to qualify as a Competent Person, as defined in the 20012 Edition of the "Australian ode for Reporting of Exploration results, Mineral Resources and Ore Reserves". Mr Edwards has provided his prior written consent as to the form and context in which the Exploration Results and the supporting information are presented in this announcement.

Prospect	Hole ID	East	North	RL	Azi-mag	Dip	Length
Kirchon	19SIRC001	258298	1451298	135	265	-50	120
	19SIRC002	258230	1451198	136	265	-50	120
	19SIRC003	258131	1450948	134	265	-50	120
	19SIRC004	258374	1451601	139	265	-50	120
	19SIRC005	258025	1450753	134	265	-50	120
	19SIRC006	258430	1451801	137	265	-50	120
	19SIRC007	258510	1452001	139	305	-50	120
	19SIRC012	258405	1452241	140	265	-50	120
	19SIRC013	258575	1452200	141	265	-50	120
	19SIRC014	258468	1452501	142	265	-50	120
	19SIRC015	258583	1453000	144	265	-50	120
	19SIRC016	258329	1453194	152	265	-50	120
Grand Filon	19SIRC008	260144	1451275	139	265	-50	120
	19SIRC009	260000	1450864	138	285	-50	120
	19SIRC010	260045	1450851	138	285	-50	180
	19SIRC011	259954	1450756	136	285	-50	120

Table 1: Sitaliki Permit RC drill collar details.

Table 2: Sitakili Permit -	- RC drilling November-	December 2019. Summa	ry of significant dril	l intersections

HoleID	From (m)	To (m)	Interval (m)	Au (g/t)	Including
19SIRC001	0.00	3.00	3.00	0.68	1.0m @ 1.25 g/t Au
	64.00	71.00	7.00	0.74	1.0m @ 2.93g/t Au
	106.00	107.00	1.00	3.03	
19SIRC002	48.00	62.00	14.00	0.63	2.0m @ 1.5g/t Au, 1.0m @ 3.05g/t Au, 1.0m @ 1.18g/t Au
	69.00	74.00	5.00	0.65	1.0M @ 1.33 g/t Au
19SIRC004	54.00	59.00	5.00	0.56	1.0m @ 1.10 g/t Au
19SIRC006	40.00	43.00	3.00	3.07	2.0m @ 4.23 g/t Au
	59.00	61.00	2.00	4.71	1.0m @ 9.26 g.t Au
19SIRC007	77.00	82.00	5.00	0.77	1.0m @ 1.65 g/t Au, 1.0m @ 1.31 g/t Au
19SIRC008	82.00	83.00	1.00	1.34	
19SIRC009	37.00	38.00	1.00	3.11	
	53.00	59.00	6.00	3.35	3.0m @ 5.49 g/t Au
19SIRC010	117.00	120.00	3.00	2.34	
	126.00	132.00	6.00	5.8	3.0m @ 10.77 g/t Au, 1.0m @ 1.88g/t Au
19SIRC011	42.00	48.00	6.00	1.97	3.0m @ 2.68g/t Au
	59.00	60.00	1.00	1.29	
19SIRC013	54.00	63.00	9.00	5.17	1.0m @ 3.24 g/t Au, 3.0m @ 13.48g/t Au
	109.00	114.00	5.00	1.54	1.0m @ 1.10g/t Au, 1.0m @ 4.94 g/t Au
19SIRC014	51.00	52.00	1.00	1.33	
	53.00	58.00	5.00	0.81	1.0m @ 1.75 g/t Au, 1m @ 1.08 g.t Au

Notes: Sampling was completed as 1m sample. Hole 19SIRC012 had a cavity at 18-21m - no sample collected; hole 1SIRC014 had a cavity at 50-51m- no sample collected. Intervals are reported using a threshold where the interval has a value of greater than 0.5g/t Au over the sample interval and selects all intervals greater than 0.10g/t Au. No internal dilution.

Table 3: Sitakili Permit = RC drilling November-December 2019. Significant assay results ≥ 0.1g/t Au

HoleID	From (m)	To (m)	Au (g/t)
19SIRC001	0	1	0.17
19SIRC001	1	2	0.69
19SIRC001	2	3	1.2
19SIRC001	5	6	0.1
19SIRC001	14	15	0.16
19SIRC001	64	65	2.93
19SIRC001	65	66	0.69
19SIRC001	66	67	0.63
19SIRC001	67	68	0.23
19SIRC001	68	69	0.17
19SIRC001	69	70	0.27
19SIRC001	70	71	0.27
19SIRC001	71	72	0.1
19SIRC001	77	78	0.16
19SIRC001	78	79	0.18
19SIRC001	79	80	0.38
19SIRC001	80	81	0.36
19SIRC001	106	107	3.03
19SIRC001	109	110	0.1
19SIRC001	112	113	0.11
19SIRC001	113	114	0.18
19SIRC002	18	19	0.17
19SIRC002	47	48	0.1
19SIRC002	48	49	0.32
19SIRC002	49	50	0.17
19SIRC002	50	51	0.11
19SIRC002	51	52	0.11
19SIRC002	52	53	2.48
19SIRC002	53	54	0.51
19SIRC002	55	56	0.18
19SIRC002	56	57	0.12
19SIRC002	57	58	3.05
19SIRC002	58	59	0.17
19SIRC002	59	60	0.24
19SIRC002	61	62	0.17
19SIRC002	62	63	1.18
19SIRC002	63	64	0.11
19SIRC002	69	70	0.62
19SIRC002	70	71	0.24
19SIRC002	71	72	1.33
19SIRC002	72	73	0.62
19SIRC002	73	74	0.46
19SIRC002	90	91	0.12

19SIRC003	1	2	0.11
19SIRC003	8	9	0.14
19SIRC003	12	13	0.12
19SIRC003	67	68	0.16
19SIRC003	74	75	0.12
19SIRC003	76	77	0.13
19SIRC003	93	94	0.2
19SIRC003	94	95	0.13
19SIRC004	53	54	0.13
19SIRC004	54	55	0.43
19SIRC004	55	56	0.73
19SIRC004	56	57	0.37
19SIRC004	57	58	0.18
19SIRC004	58	59	1.1
19SIRC004	59	60	0.12
19SIRC005	44	45	0.78
19SIRC005	45	46	0.37
19SIRC005	51	52	0.15
19SIRC005	82	83	0.42
19SIRC005	83	84	0.55
19SIRC005	85	86	0.17
19SIRC005	86	87	0.22
19SIRC005	96	97	0.2
19SIRC005	99	100	0.14
19SIRC006	13	14	0.1
19SIRC006	40	41	2.13
19SIRC006	41	42	6.33
19SIRC006	42	43	0.74
19SIRC006	53	54	0.24
19SIRC006	55	56	0.26
19SIRC006	59	60	9.26
19SIRC006	60	61	0.15
19SIRC007	21	22	0.16
19SIRC007	77	78	0.5
19SIRC007	78	79	1.65
19SIRC007	79	80	0.24
19SIRC007	80	81	0.17
19SIRC007	81	82	1.31
19SIRC007	82	83	0.12
19SIRC008	71	72	0.17
19SIRC008	80	81	0.22
19SIRC008	81	82	0.15
19SIRC008	82	83	1.34
19SIRC008	83	84	0.16
19SIRC008	88	89	0.49
19SIRC008	89	90	0.76
19SIRC008	94	95	0.43

19SIRC008	109	110	0.44
19SIRC008	115	116	0.26
19SIRC009	31	32	0.2
19SIRC009	32	33	0.21
19SIRC009	37	38	3.11
19SIRC009	39	40	0.21
19SIRC009	49	50	0.11
19SIRC009	53	54	1.08
19SIRC009	54	55	10.7
19SIRC009	55	56	4.68
19SIRC009	56	57	0.73
19SIRC009	57	58	1.41
19SIRC009	58	59	1.52
19SIRC009	59	60	0.13
19SIRC009	60	61	0.13
19SIRC009	60	61	0.17
19SIRC009	61	62	0.16
19SIRC009	78	79	0.1
19SIRC009	82	83	0.86
19SIRC010	84	85	0.1
19SIRC010	85	86	0.23
19SIRC010	116	117	0.19
19SIRC010	117	118	2.68
19SIRC010	118	119	3.9
19SIRC010	119	120	0.45
19SIRC010	126	127	20.2
19SIRC010	127	128	9.02
19SIRC010	128	129	3.09
19SIRC010	129	130	0.42
19SIRC010	130	131	1.88
19SIRC010	131	132	0.14
19SIRC010	160	161	0.13
19SIRC010	161	162	0.25
19SIRC011	3	4	0.1
19SIRC011	40	41	0.22
19SIRC011	42	43	0.85
19SIRC011	43	44	2.86
19SIRC011	44	45	1.68
19SIRC011	45	46	3.51
19SIRC011	46	47	0.94
19SIRC011	47	48	0.14
19SIRC011	59	60	1.29
19SIRC011	60	61	0.31
19SIRC011	95	96	0.11
19SIRC011	104	105	0.32
19SIRC012	0	1	0.12
19SIRC012	15	16	0.11

19SIRC012	17	18	0.1
19SIRC012	21	22	0.12
19SIRC012	23	24	0.1
19SIRC012	24	25	0.8
19SIRC012	25	26	0.19
19SIRC012	26	27	0.13
19SIRC012	28	29	0.1
19SIRC013	1	2	0.1
19SIRC013	10	11	0.16
19SIRC013	11	12	0.21
19SIRC013	15	16	0.11
19SIRC013	36	37	0.1
19SIRC013	47	48	0.18
19SIRC013	54	55	0.63
19SIRC013	55	56	3.24
19SIRC013	56	57	0.41
19SIRC013	57	58	0.82
19SIRC013	58	59	0.24
19SIRC013	59	60	1.24
19SIRC013	60	61	1.3
19SIRC013	61	62	37.9
19SIRC013	62	63	0.79
19SIRC013	64	65	0.1
19SIRC013	82	83	0.48
19SIRC013	83	84	0.34
19SIRC013	84	85	0.34
19SIRC013	85	86	0.53
19SIRC013	86	87	0.4
19SIRC013	87	88	0.15
19SIRC013	89	90	0.1
19SIRC013	95	96	0.17
19SIRC013	108	109	1.1
19SIRC013	109	110	0.93
19SIRC013	110	111	0.31
19SIRC013	111	112	0.42
19SIRC013	112	113	4.94
19SIRC013	113	114	0.11
19SIRC014	49	50	0.27
19SIRC014	51	52	1.33
19SIRC014	53	54	0.25
19SIRC014	54	55	1.75
19SIRC014	55	56	0.7
19SIRC014	56	57	1.08
19SIRC014	57	58	0.29
19SIRC014	58	59	0.19
19SIRC014	60	61	0.42
19SIRC014	61	62	0.12

19SIRC015	10	11	0.48
19SIRC015	16	17	0.32
19SIRC015	45	46	0.15
19SIRC015	46	47	0.15
19SIRC015	50	51	0.1
19SIRC015	51	52	0.13
19SIRC015	55	56	4.96
19SIRC015	56	57	0.29
19SIRC015	57	58	0.19
19SIRC015	58	59	0.43
19SIRC015	59	60	0.27
19SIRC015	64	65	0.2
19SIRC015	83	84	0.21
19SIRC016	2	3	0.1
19SIRC016	3	4	0.79
19SIRC016	4	5	0.4
19SIRC016	5	6	0.57
19SIRC016	7	8	0.77
19SIRC016	8	9	0.56
19SIRC016	9	10	3.28
19SIRC016	10	11	0.11
19SIRC016	12	13	0.26
19SIRC016	13	14	1.31
19SIRC016	14	15	0.61
19SIRC016	15	16	0.27
19SIRC016	18	19	1.13
19SIRC016	19	20	0.15
19SIRC016	20	21	0.18
19SIRC016	23	24	0.18
19SIRC016	24	25	8.12
19SIRC016	70	71	0.17
19SIRC016	71	72	0.22
19SIRC016	72	73	0.18
19SIRC016	73	74	0.11

Table 4: JORC Code, 2012 Edition.

Section 1 - Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill samples were collected as 1m intervals split from bulk sample using a splitter. QAQC – certified reference standards, blanks and field duplicates have been inserted into sample runs. Samples have been collected on site by SGS Mali and taken to SGS Bamako for analysis by Fire Assay.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC and AC drilling was carried out by Geodrill Mali SARL using standard recognized techniques and procedures
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An initial visual estimate of RC sample recovery was undertaken at the drill rig for each sample metre collected. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. No sampling issue, recovery issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Sems geologists, contracted by African Gold. Geological logging used a standardized logging system. Geological logging is qualitative and descriptive in nature.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximize representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples were split utilizing a 3 tier riffle splitter with a 1m sample being taken Duplicates were taken to evaluate representativeness. Further sample preparation was undertaken at the SGS laboratories by SGS laboratory staff. At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 %< 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 %< 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 %< 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. Sample sizes and laboratory preparation techniques are considered to be appropriate

Criteria	JORC Code explanation	Commentary
		for this early stage exploration and the commodity being targeted.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RCs assaying done by SGS Mali in Bamako in accordance with standard procedures. In laboratory samples: PRP70-2KG - Crush, split and pulverize 2kg rock/chip to 200 mesh, FA450 Au by 50g/10ml Fire Assay fusion, AAS finish. In addition to the Company QAQC samples (described earlier) included within the batch the laboratory included its own CRM's, blanks and duplicates.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Laboratory QAQC acceptable. Companies standards, blanks and duplicates acceptable.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All samples are located with hand held GPS. These positions are considered to be within 5 metres accuracy in the horizontal plane and less so in the vertical. All sample location data is in UTM grid WGS84 Zone 29N
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC holes are of a reconnaissance nature and not fixed spacing.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 RC drilling orientated close to perpendicular to interpreted mineralized structure.
Sample security	The measures taken to ensure sample security.	 All samples guarded all the time. Samples removed from site and stored in secure facilities, Samples collected from site by SGS Mali.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews completed.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary		. ,												
Mineral tenement and land tenure	Permit detai	ls are pro	vided	in Table	e 1 of t	his App	pendix.								
status															
status Exploration done by other parties	All attempts have b Results of regional s and airborne magne Sitakili Permit : previ noted that there are appears to be by Eu summarises the kno covered by the Sitak SONAREM - Société assistance of Russian Direction Nationale (2006) with the fina Fugro for aerial geo area include Sanor E Marchmont Gold Co geophysical survey of Randgold variously of More recently, Alba rock sampling of dur the period when a c miners to lawfully u commercial agreem lengthy hiatus for m activity for gold else	peen mac surveys a etic and r ous explo e occasio rekaGolc wn explo cilli permi National n Geolog de la Gén ncial assi physical : cxploratio ryporatio which is o undertoc b Mining mps and ommuna ndertake ent with loodern ex-	de to c re not adiome oration nal cor I SARL (bration t have le de Re ists, th ologie e stance stance stance stance on (198 n Ltd (: of limit k rock SARL a mining the loc cplorati n Mali a s soccu	compile referre etric su is sum itradict (2017), work u been ir echerch e Burea et des N of the ng (Ma 38), Vici 1996-1 ed valu samplia and Eur vorking ng right g. The F cal com ion in t ion in t	e as m rveys. amarise ions b and th underta vvestig he et d au de f Mines Europ ggnetic tory Ex 997), a e. Vict ng, tre rekaGc gs. The e: was g Randge was g Randget be Sita a st Afride	uch of detail, ed from etweer hat repe aken at ated by 'Exploi Recherce (DNGM ean Col s and R plorati not Rar ory rep nching, ld SARI appare azettec bld wor y. Aside kili are ca gene ties of l	the pr they c report some ort is g Sitakil y variou tation l ches Ge 1) toget mmuni adiom on Cor ndgold ported s , auger L (2016 ent inac d over S k durin e from a; occu erally.	tevious compris of the enerally i. The b us gove Minière éologiq ther witi ity and etric). (poratio (2005-2 soil sam c, RC dri 5-2017) ctivity f Sitikili. 1 ng 2005 the Rar urring d	explor e map ared b report: y reliec roader rnmen es (196 ues et th Klöc Compa n (198 2006). npling a compl lling ar compl rom ar Fhis rig is beli indgold uring a d Filon	ation (ping, r y past s, howe d on he Kenie t supp 2-1968 Minièr (1) chnical nies th 9). Tirr Sanor (and pit hd dian eted n ound 1 ht gave veved to work, t time o	on the egiona and pr- ever th re. The ba region to the ses (BR- 9.987-1: assista at report buttu undert ting. Monond dh nappin, 9.998 toc o have this pen of signi ndia, a	se perri l geoch esent h e best : e table l on and agencie the teo GM) 19 993), ar ince of prt wor Gold C ook a n larchm rilling (g and so 2016 o ty to lo been u riod rep ficant e	nits as emical olders summa below areas s, inclu hnical 79-198 Mevror k in the orpora odest ont an see be orme se corresp ccal art nderta a oresen explora	possibl samplir It is ary adding 34, MIN MECL are Sitakili tion / d low). elective ponds to isanal ken by ts a tion	le. ng nd i
	Mine pits and stope	s are up	to 15m	n wide a	and ext	tend al	ong str	ike for	in exce	ess of 2	.km. M	ine ope	enings	are	
	typically 10-15m de	ep, with	some s	mall sh	hafts (u	tilising	water	pumpir	ng equ	ipment	t) exter	nding to	o abou	t 25m to	o
	community suggest	they we	re mos	saproi tly opei	ned up	in the	last 10) years.	Signifi	cantly,	the his	storical	drillin	g (last	
	done in 2005) is beli	ieved to	have b	een cor	mplete	d prior	to the	artisar	nal "dis	covery	" of th	e prima	iry zon	es at	
	Kirchon and Makano	dja, sugg	esting t	the exte	ensive	workin	igs now	v evider	nt at th	iese loo	cations	remair	n relati	vely	
	government agencie	A compi s - Klock	ner reg	of this (vional e	data is zeoche	presen mical s	itea in survev l	the tab (1000m	ie beic x 250	w. кес m – 20	connais 8 sami	sance s bles) Ai	soli sar irborne	מ npiing b	γ
	magnetic survey and	d regiona	il geolo	gical m	appin	g (1;20	0,000)	BRGM	/ SYSN	IIN.	o sum	JICJJ. A	ii boirin	-	
				0	1	Pit	Tre	ench	Au	aer	F	C	Diar	nond	
		Period	Soil	Rock	#	(m)	#	(m)	#	(m)	# (m)		#	(m)	
	Government Agencies	1962-2006	Regional	mapping a	nd soil sai	npling. Acc	quisition of	airborne m	agnetics a	ind radiom	etrics. 1:2	00,000 geo	logical inte	rpretation	
	Victory Exploration	1989	~1000		87	?					47	2			
	Marchmont Gold	1990									17	(
	Kirchon South	n					2	132	209	1923			7	1851	
	Grand Filor	n							70	744			24	5845	
	Randgold	2005		264									8	1407	
	Albab Mining Furekagold	2014		121											
	Lurenagolu	2013	~1000	610	87	0	2	132	279	2667	17	0	39	9103	
Geology	Geological backgro	ound –	area	under	cons	ideratio	on is	under	lain b	v Pala	aeopro	terozoi	c sed	imentar	rv.
0.	volcanosedimentary	and volu	canic ro	ocks of	the Bir	imian S	Supergr	roup an	d Kofi I	, Format	tion in	the nor	thern I	KI, whic	ch
	is situated on the we	estern m	argin o	f the W	/est Af	rican cr	raton. 1	The Biri	mian S	upergr	oup ar	id Kofi I	ormat	ion in th	he
	KKI was deposited in	n a marin st. durin	e settir a tho	ng and a	adjace	nt to a	volcan	1c arc a	t ca. 2. So The	36 Ga.	The Su	pergro Orogon	up was	accrete	ed ic
	characterized by the	st during svn-tect	g trie tonic ei	mplace	ement o	ogeny of I-tvp	e calc-a	alkaline	granit	e Ebur oids th	nean at intri	uded vo	lcanic.	chemic	cal
	sedimentary and cla	stic sequ	ences.	Transc	urrent	tecton	ics was	accom	panied	l by a la	ate ma	gmatic	eventa	at ca. 2.0	07
	Ga. The KKI can be	divided	into th	nree dis	stinct	Palaeop	proterc	ozoic st	rato-st	ructur	al dom	iains. T	he we	stern ar	nd
	central domains are	separate	ed by tl	he Mai	central domains are separated by the Main Transcurrent Shear Zone, while the central and eastern								ern do	mains a	ire
	separated by the SMSZ. The permits under consideration are situated east of the SMSZ. The eas								ete -	100'	of				
	separated by the SN	/ISZ. The diola To	permit ulo se	ts unde gala an	er cons	ideratio	on are	situate ds The	d east domai	of the	SMSZ.	The ea	stern o cks hel	domain onging	of to
	separated by the SN the KKI hosts the Sa the Kofi Formation.	diola, Lo which is	permit ulo, Se comp	ts unde gala an osed o	er cons Id Taba f thick	ideratio ikoto g sequei	on are oldfield nces of	situate ds. The f volcar	d east domai niclastio	of the n is co c rocks	SMSZ. mpose , areni	The ea d of ro tes, wa	stern o cks bel ickes, s	domain onging siltstone	of to es,
	separated by the SN the KKI hosts the Sa the Kofi Formation, argillites, and carbo	diola, Lo which is mates w	permit ulo, Se comp ith mir	ts unde gala an osed o nor inte	er cons nd Taba f thick ercalati	ideration akoto g sequer ons of	on are oldfield nces of andes	situate ds. The f volcar iite lava	d east domai niclastio ns and	of the n is co c rocks rhyolit	SMSZ. mpose , areni :e pyrc	The ea d of ro tes, wa clastite	stern o cks bel ickes, s is. The	domain onging siltstone flat-lyir	of to es, ng

Criteria	Commentary
	and crops out along an escarpment north and east of the project area. The sandstone unconformably overlies Palaeoproterozoic sequences.
Drill hole Information	Historical data- information from incomplete company reports.
	Drilling was done by various companies: see comments table 1.
	- Siakili - Marchmont Gold (DD), Randgold (DD)
	Significant results reported in body of announcement and on diagrams. Totals holes and meters are reported within this table.
Data aggregation methods	Reported intercepts are weighted averages.
Relationship between mineralisation widths and intercept lengths	RC and diamond dips and azimuths optimized to drill orthogonal to mineralized structures based on geological interpretation. Ture widths are generally unknown.
Diagrams	See body of report.
Balanced reporting	All data that could be collected and verified has been reported (see tables for complete disclosure of known soil sampling, trenching and drilling). On 17 April 1996, Timbuktu Gold Corp reported drilling 17 RC holes at a project referred to as Sitakili. Results from only two holes were publicly reported and were subsequently challenged by the Alberta Stock Exchange. Results from the remainder of the holes were never reported. The precise geographic location of this drilling has not been confirmed by Abra or the Company, however drilling is believed to have targeted the southern portion of Kirchon. An investigation by the Alberta Stock Exchange subsequently found the results from this work program were tainted and should be disregarded. The zones that were drilled remain effectively untested by reliable drilling. THIS DATA HAS NOT BEEN REPORTED. Marchmont Gold Corporation (formerly Timbuktu Gold Corporation) completed two trenches and undertook 7,696.m of DD drilling, mainly targeting the Grand Filon trend. Not all sample results are displayed in plans. Only significant data that could reasonably substantiated has been reported in body of announcement.
Other substantive exploration data	No other substantive exploration work is known apart from that reported above in this Table. See above under balanced reporting. As is common in west Africa a significant amount of artisanal activity and mining has taken place on some occurrences. Pits and shafts are typically shallow (<30m)
Further work	Further collection, collation and interpretation of historical data. Followed but mapping, soil and rock chip sampling, pitting, trenching, auger, geophysics, RAB/AC, RC and diamond drilling.