

ASX Announcement 14 October 2025

SYSTEMATIC EXPLORATION CONTINUES TO STRENGTHEN THE **BLAFFO GUETTO RESOURCE ZONE**

Standout intercept: 16m at 13.2g/t Au from 197m (BGDD25-005)

Further highlights:

13m at 2.8g/t Au from 257m (BGDD25-010)

10m at 2.9g/t Au from 351m (BGDD25-001)

10m at 2.8g/t Au from 407m (BGDD25-008)

7m at 2.8g/t Au from 98m (BGDD25-012)

7m at 1.9g/t Au from 287m (BGDD25-003)

5m at 4.2g/t Au from 353m (BGDD25-007)

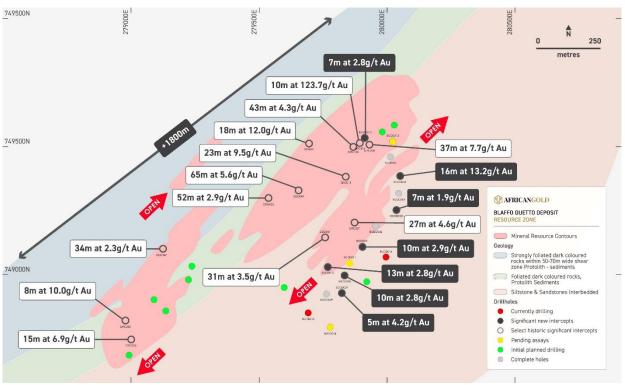


Figure 1: Plan view of Blaffo Guetto mineralisation with key new intercepts highlighted

Drilling confirms consistent grades at near-true thicknesses, strengthens structural and geological understanding, and demonstrates downdip continuity, supporting resource expansion to the east.

African Gold (ASX: AIG) ("African Gold" or the "Company") is pleased to report the first results from the current drill program at Blaffo Guetto. The program commenced shortly after the announcement of the Mineral Resource Estimate (MRE) in June 2025, which reported the Blaffo Guetto Resource at 989,000oz within 12.4 million tonnes at 2.5g/t Au¹. The current >40,000-metre drilling campaign is designed to materially expand the resource footprint and test high-conviction regional targets. Results to date reinforce the Project's scale, grade and growth potential, with non-headline intervals also adding meaningful ounces to the growing resource base.

African Gold Chief Executive Officer, Adam Oehlman, said: "These initial results from Blaffo Guetto are very encouraging. We are consistently seeing high grades over meaningful widths, which reinforces the scale and quality of the system. Our systematic program is generating high-quality datasets that are building confidence in the geological model and informing the ongoing structural review. With two diamond rigs turning and RC rigs scheduled to commence in November on priority regional targets, we are well positioned to grow the Blaffo Guetto resource and advance additional discoveries across the broader Didievi project area. Our funding position supports an accelerated program, resulting in a steady cadence of assay results and market updates, with a focus on the key value levers of drilling, studies and project execution milestones."

Current activity and near-term work

Despite the wet season, progress has been solid. Two diamond rigs are currently drilling on the Blaffo Guetto resource, with two RC rigs scheduled to mobilise in November to test priority regional targets.

Funding and cadence

The Company remains well-funded, with approximately A\$16 million in cash and liquid assets, enabling accelerated activity and a steady cadence of assay and market updates.

Technical workstreams

A structural review is underway to refine targeting and optimise follow-up drilling and resource expansion. In parallel, key workstreams are advancing, including metallurgical testwork to support the Scoping Study, environmental baseline assessments, and broader critical-path activities.

Partnerships and support

African Gold acknowledges the continued support of its major shareholder, Montage Gold, which is advancing the Koné Gold Project in Côte d'Ivoire. With Montage's exploration team executing the Didievi program, the Company is well supported to continue its growth trajectory.

¹ AIG ASX Announcement dated 23 June 2025: Blaffo Guetto's Inferred Resource Surges 119% to 989,000oz within 12.4 million tonnes at 2.5g/t Au. Inferred Resource of 989,000oz within 12.4 million tonnes at 2.5g/t Au (0.8g/t cut-off).

Didievi - Côte d'Ivoire's Next Multi-Million-Ounce Gold Project

The Didievi Project is emerging as one of Côte d'Ivoire's most exciting gold opportunities.

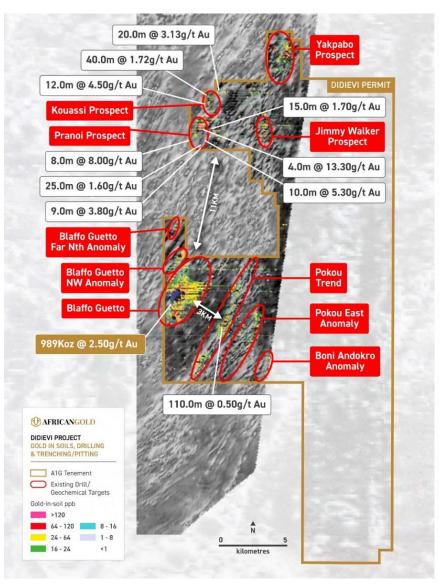


Figure 2: Planview of Didievi tenement with prospects highlighted

Blaffo Guetto remains the cornerstone prospect with close to 1 million ounces already defined at an average grade of 2.5g/t from surface; however, recent drilling at Pranoi has confirmed more than 600 metres of continuous mineralisation along a potential 1.5-kilometre strike, while early work on the 9-kilometre Poku Trend has already delivered significant intercepts despite limited drilling. These discoveries, combined with eight additional drill-ready targets, underscore the district-scale potential of Didievi to host a multi-million-ounce gold resource.

In addition to scale, Didievi offers rare development flexibility. The Project sits within trucking distance of approximately 8 million tonnes of existing processing capacity, providing a clear pathway to near-term production alongside the potential to support a future standalone operation.

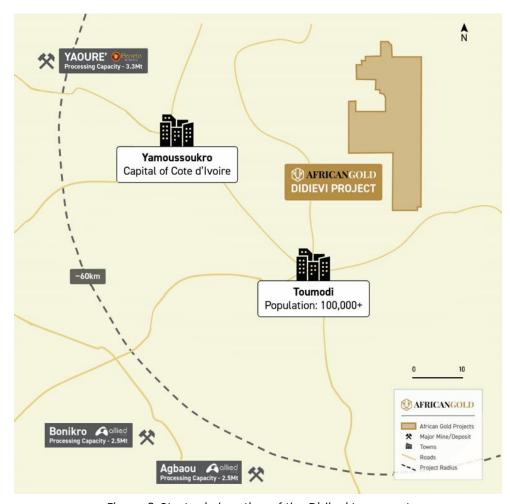


Figure 3: Strategic location of the Didievi tenement

African Gold continues methodical exploration across the broader project area, with the dual objective of growing resources and unlocking the full value of this underexplored, highly prospective gold corridor.

This announcement has been approved for release by the Board.

For further information, please contact:

Mr Adam Oehlman
Chief Executive Officer
E: admin@african-gold.com

Competent Person's Statements

The information contained in this announcement that relates to new exploration results for the Didievi Project, Cote d'Ivoire, is based on and fairly reflects, information compiled by Dr Marat Abzalov, who is a fellow of the Australasian Institute of Mining and Metallurgy. Dr Abzalov, via his company Massa Geoservices, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Abzalov consents to the inclusion in this announcement of the matters based on his information on the form and context in which it appears. Dr Abzalov holds shares and options in African Gold Limited.

The mineral resource estimate referred to in this announcement was reported by the Company in accordance with Listing Rule 5.8 on 23 June 2025. The Company confirms it is not aware of any new information or data that materially affects the mineral resources estimate included in the previous announcement and that all material assumptions and technical parameters underpinning the mineral resource estimate in the previous announcement continue to apply and have not materially changed.

The historical exploration results referred to in this announcement were reported in accordance with Listing Rule 5.7 on 11 August 2021, 8 September 2021, 7 October 2024, 15 October 2024, 31 March 2025, 7 April 2025, 6 May 2025 and 23 June 2025. The Company confirms it is not aware of any new information that materially affects these results

Appendix 1: Drill collar details and intercept information

Table 1: Drill Collar Locations Blaffo Guetto

HOLE_ID	ТҮРЕ	EAST	NORTH	RL	LENGTH (m)	DIP	AZI	Status
BGDD25-001	Diamond core	279903	749116	209	423	-55	317	Complete
BGDD25-002	Diamond core	279960	749201	206	434.3	-55	317	Complete
BGDD25-003	Diamond core	280043	749258	212	346.8	-55	317	Complete
BGDD25-004	Diamond core	280050	749324	220	325.2	-55	317	Complete
BGDD25-005	Diamond core	280056	749391	229	276.5	-55	317	Complete
BGDD25-006	Diamond core	280019	749467	239	216.3	-55	317	Complete
BGDD25-007	Diamond core	279830	748937	217	449.7	-55	317	Complete
BGDD25-008	Diamond core	279837	749003	219	440	-55	317	Complete
BGDD25-009	Diamond core	279767	748932	223	430	-55	317	Complete
BGDD25-010	Diamond core	279770	749037	225	420	-55	317	Complete
BGDD25-011	Diamond core	279856	749056	216	420	-55	317	Assays pending
BGDD25-012	Diamond core	279931	749526	247	150	-55	317	Complete
BGDD25-013	Diamond core	280024	749535	255	200	-55	317	Assays pending
BGDD25-014	Diamond core	279783	748804	217	590	-55	317	Assays pending
BGDD25-015	Diamond core	279699	748858	232	363	-55	317	Drilling
BGDD25-016	Diamond core	279923	748984	209	298	-55	317	Drilling

Table 2: New Significant Intercepts Mineralised (cut-off of 0.5g/t Au)

HOLE_ID	FROM	ТО	LENGTH	Au (g/t)
BGDD25-001	63	65	2	2.6
BGDD25-001	96	101	5	2.1
BGDD25-001	215	219	4	1.9
BGDD25-001	226	231	4	1.6
BGDD25-001	351	361	10	2.8
BGDD25-001	394	396	2	0.6
BGDD25-002	156	160	4	1.7
BGDD25-002	266	276	10	0.9
BGDD25-002	278	281	2	0.6
BGDD25-002	292	295	4	2.0
BGDD25-003	144	146	2	0.6
BGDD25-003	287	294	7	1.9
BGDD25-005	162	165	3	2.6
BGDD25-005	197	213	16	13.2
BGDD25-007	353	359	5	4.2

BGDD25-008	299	302	3	2.4
BGDD25-008	407	417	10	2.8
BGDD25-009	327	332	5	1.6
BGDD25-009	428	431	3	1.0
BGDD25-010	216	218	2	1.2
BGDD25-010	257	270	13	2.8
BGDD25-010	380	383	2	8.0
BGDD25-012	41	47	6	1.0
BGDD25-012	98	105	7	2.8

admin@african-gold.com

Appendix 2: JORC Tables

Criteria

JORC (2012) TABLE 1 Checklist of Assessment and Reporting Criteria

Details of the Reported Project

Section 1 - Sampling Techniques and Data **Explanation**

(1.1.)	Nature and	•	The new	drilling d	ata inclu	des diam	ond drill co	ore s	ampl	es collected
Sampling	quality of		from the	recently	drilled 12	drillholes	s – BGDD25	-001	to BG	DD-010 and
techniques	sampling (eg		BGDD012	(Table 1.1	l-1). Drillh	oles, BGD	D25-011, B0	3DD2	5-013	3 and
	cut channels,		BG25014,	have be	en comp	leted but	assays we	ere no	ot rec	eived by the
	random chips,		date of re	porting.	Drillholes	BGDD-0	15 and BGE	D-0	16 are	currently
	or specific		being dril	led.						
	specialized	•	The all re	ported d	rillholes v	vere drille	ed at the Bl	affo	Guett	o deposit of
	industry		the Africo	ın Gold L	td.					
	standard	•	These dri	llholes w	ere drille	d betwee	n July and	Sept	emb	er of 2025
	measurement		with an o	bjective	to extend	the min	eralised do	maiı	ns an	d infill gaps
	tools		in the Mir	eral Res	ources of	f the Blaff	o Guetto d	epos	sit est	imated in
	appropriate to		2025 and	referred	l here as	MRE2025	(ASX 2025	, Jun	e 23)	
	the minerals	•	Total leng	gth of the	e comple	ted drillh	oles is 5,78	3m, c	avera	ge length
	under		361m (Ta	ble 1.1-1):						
	investigation,									
	such as down	Table 1.1-1: D	rillholes repo	orted in t	he currei	nt ASX rel	ease.			
	hole gamma									
	sondes, or	HOLE_ID	ТҮРЕ	EAST	NORTH	RL	LENGTH (m)	DIP	AZI	Status
	handheld XRF	BGDD25-001	Diamond core	279903	749116	209	423	-55	317	Complete
	instruments,	BGDD25-002	Diamond core	279960	749201	206	434.3	-55	317	Complete
	etc). These	BGDD25-003	Diamond core	280043	749258	212	346.8	-55	317	Complete
	examples	BGDD25-004	Diamond core	280050	749324	220	325.2	-55	317	Complete
	should not be	BGDD25-005	Diamond core	280056	749391	229	276.5	-55	317	Complete
	taken as	BGDD25-006	Diamond core	280019	749467	239	216.3	-55	317	Complete
	limiting the	BGDD25-007	Diamond core	279830	748937	217	449.7	-55	317	Complete
	broad meaning	BGDD25-008	Diamond core	279837	749003	219	440	-55	317	Complete
	of sampling.	BGDD25-009	Diamond core	279767	748932	223	430	-55	317	Complete
		BGDD25-010	Diamond core	279770	749037	225	420	-55	317	Complete
		BGDD25-011	Diamond core	279856	749056	216	420	-55	317	Assays pending
		BGDD25-012	Diamond core	279931	749526	247	150	-55	317	Complete
		BGDD25-013	Diamond core	280024	749535	255	200	-55	317	Assays pending
		BGDD25-014	Diamond core	279783	748804	217	590	-55	317	Assays pending
		BGDD25-015	Diamond core	279699	748858	232	363	-55	317	Drilling
		BGDD25-016	Diamond core	279923	748984	209	298	-55	317	Drilling
						Total	5,783			
						Average	361			

Include
reference to
measures
taken to ensure
sample
representivity
and the
appropriate
calibration of
any
measurement
tools or
systems used.

- The diamond drill core was oriented, marked, logged, and split in half using a diamond core saw before being sampled. Sample intervals are in a range 0.5-1.5m, average 1.1m.
- Drilling and sampling procedures are as follows:

the diamond core was recovered using a wireline technique and then it was marked on a the intervals of 1m. Shorter intervals, 0.5 – 1m, were used when sampling had to be adjusted to the geological contacts. A longer interval, 1.5m, was used for the parts of the core where geology was monotonous.

- The marked core was cut in half by a diamond saw, split and sampled.
- Drilling and sampling are matching the industry standard practices and quality of the obtained samples were found an appropriate for Mineral Resource and Ore Reserves estimation

Aspects of the determination mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be

required, such as where there is coarse gold The determination of mineralisation has been made by a combination of geological observations (logging and mapping) in conjunction with assay results from the surface drilling.

Drilling and sampling have been done following best practice operating procedures of the mining industry and in good accordance with the industry standards. This included the following:

- Diamond core drilling was performed using NTW size drill core, 3-4 kg samples were collected, representing approximately 1m intervals of the drill core. Sampling was made honouring the geological contacts.
- Each sample was cut in a half using a diamond saw, collected half core was further processed and assayed for gold.

Mineralised intercepts have been estimated using the Economic Composite calculation tool from Leapfrog Geo software, with Advanced options. Input parameters were the following:

- 0.5 g/t Au as the cut-off value
- Minimum ore composite length: 2m
- Maximum consecutive waste: 2m

Internal dilution length may vary and be adjusted by hand locally to reflect better continuity, where geological continuity increased confidence and overall composite grade allowed it.

that has
inherent
sampling
problems.
Unusual
commodities
or
mineralisation
types (eg
submarine
nodules) may
warrant
disclosure of
detailed
information.

• The reported drilling results were obtained by a diamond core drilling carried out by Easy Drill, which used the portable drill rigs, NOCK 800 (ver.3 and 4) (Fig. 1.2-1).

Drilling techniques (1.2.)

Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).

Fig. 1.2-1: Drill rig NOCK 800 used by African Gold Ltd in 2025

- Most of the diamond core drilling was made using HQ size drill bits from surface and for drilling the pre-collar through weathered rocks (laterite, saprolite and transition), switching to NTW diameter when reaching fresh rock.
- Diamond drilling was oriented. Orientation was made using the REFLEX DOWNHOLE CORE ORIENTATION UNIT. Name of the instrument: REFLEX ACT III RD NTW CORE ORIENTATION KIT REFLEX reference: AURUM15052024_2. Serial numbers: Act32139, Act36243, Act3c1113

	1	
Drill sample recovery (1.3.)	Method of recording and assessing core and chip sample recoveries and results assessed.	 Drill core losses were recorded using the linear method, based on comparison of the recovered core length vs nominal length of the drilled interval. No significant sample losses were noted (90% below 30cm) Core recovery was supervised by the field geologists and drillers were
	taken to maximise sample recovery and ensure representative nature of the samples.	requested to adjust drilling parameters where this found appropriate to do.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No significant sampling issues were noted, and it is therefore considered that both sample recovery and quality is adequate for the Mineral Resource and Ore Reserves estimation
Logging (1.4.)	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation,	 All drill samples were geologically logged by experienced qualified geologists. The level of geological and geotechnical logging was adequate to support Mineral Resource estimation and applicable for the mining and metallurgical studies

	1		
	mining studies ,		
	and		
	metallurgical :		
	studies.		
	Whether		ing used a standardized logging system. It was essentially
	logging is	•	descriptive in nature.
	qualitative or		gging was semi-quantitative, recording the following
	quantitative in	-	re loss per drill run, drilling diameter, RQD (10cm), weathering
	nature. Core	-), resistance index (R0 to R6), joints count and description.
	(or costean,		urements (Dip and Azi) were quantitative and made using
	channel, etc)	a special device	e colloquially referred as a "rocket launcher".
	photography.		
	The total length	 The total length 	of the reported drillholes is 5,783m.
	and	 100% of the drillh 	oles, including mineralised intervals and their host rocks,
	percentage of	will be logged. A	t the time of this release was prepared logging of the
	the relevant	drillholes was in	-progress.
	intersections		
	logged.		
Sub-	If core, whether	 Drill core was sp 	lit in half using a diamond core saw
sampling	cut or sawn		
techniques	and whether		
and	quarter, half or		
sample	all core taken		
preparation	If non-core,		Current ASX release contains only the diamond drill core
(1.5.)	whether riffled,	drilling data.	
	tube sampled,		
	rotary split, etc		
	and whether		
	sampled wet or		
	dry.		
	For all sample		tion was made at the MSA-LAB in Yamoussoukro, Ivory
	types, the		aration procedure consists of crushing the entire sample
	nature, quality		at 80% pass, and then splitting the crushed material,
	and	•	0g aliquot for assaying for Au using the Photon assay
	appropriatenes	instrument.	,
	s of the sample	•	ed for multispectral analysis (ICP-OES for multi – elements)
	preparation	for pulverized to	75 microns
	technique.		SAMPLE PREPARATION
		METHOD CODE	DESCRIPTION Single charge for each batch of camples submitted
		ADM-300 CPA-Jar	Single charge for each batch of samples submitted Unit charge per CPA Jar
		CRU-999	Crush to client specification
		PLG-100	Log Sample - No preparation required
		PPU-530	Pulverize 1000g to 85% -75 μm
		SPL-425	Split 1000g material (Rotary Split)

	CPLL 999: Cruch entire Sample to 1mm at 90% passing
	CRU-999: Crush entire Sample to 1mm at 80% passing
	Assessment of the appropriateness of the sample preparation techniques
	Sample sizes and laboratory preparation techniques corresponds to the
	common industry practices and considered to be appropriate for Mineral
	Resource estimation of the orogenic gold deposits.
Quality control	Laboratories used sieving tests to assure particle size is matching to the
procedures	certified parameters of the sample preparation protocol. This analysis is
adopted for all	conducted routinely by the laboratory personnel and represents
sub-sampling	operational practice of the laboratory.
stages to	operational practice of the laboratory.
	The signing test is performed in each batch to angure the correct arind size
maximise	The sieving test is performed in each batch to ensure the correct grind size in rehinund.
representivity	is achieved.
of samples.	
Measures	Duplicates of the coarse rejects (-1mm material after first crush) were
	systematically collected and analyzed.
'	sample assays
material	
collected,	
including for	
instance results	
for field	
duplicate/seco	
nd-half	
sampling.	
Whether	 The drillhole samples are 3-4 kg. This size is appropriate to the grain size of
sample sizes	the mineralisation being sampled.
are	 Review of the petrographic data of the Blaffo Guetto deposit and the
appropriate to	duplicate samples study, undertaken during MRE2025 (ASX 2025, June 23),
the grain size	have shown that the obtained samples are representative for the Blaffo
of the material	Guetto deposit. Estimated precision error was less than 20%, which concurs
being sampled.	with a relatively low nugget effect (19%) of the gold variograms (Fig. 1.5-1).
,	
	1.00
	0.75
	"siDe&
	0.50
	0.25
	0.00 0 50 100 150 200 250 Distance (m)
l i	
including for instance results for field duplicate/seco nd-half sampling. Whether sample sizes are appropriate to the grain size of the material	the mineralisation being sampled. Review of the petrographic data of the Blaffo Guetto deposit and the duplicate samples study, undertaken during MRE2025 (ASX 2025, June 23 have shown that the obtained samples are representative for the Blaffo Guetto deposit. Estimated precision error was less than 20%, which conc with a relatively low nugget effect (19%) of the gold variograms (Fig. 1.5–1)

		data ASV 2025 June 22)
		data, ASX 2025, June 23)
		Additional petrographic studies have been undertaken in June 2025 that has confirmed representativity and appropriateness of the sampling size and sampling techniques
Quality of assay data and laboratory tests (1.6.)	The nature, quality and appropriatenes s of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 The samples were assayed for Au by Chrysos Photon Assay instrument. This is a relatively new method which at present is broadly used in the mining industry and has become a modern standard of the gold mining industry. The method uses 300g aliquot which is superior to a conventional fireassay method that uses 50g aliquots. This is a total recovery technique.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable – no such tools used.
	nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory	 QAQC procedures used at this phase of drilling include 4% standards (OREAS) and 4% blanks. Certified standard samples and blanks (Fig.1.6-1) did not reveal issues that could affect quality of the sample assay results. Duplicate samples were not analysed at this stage, however the project team assured that the representative samples will be selected and analyzed during the this phase of drilling.

checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

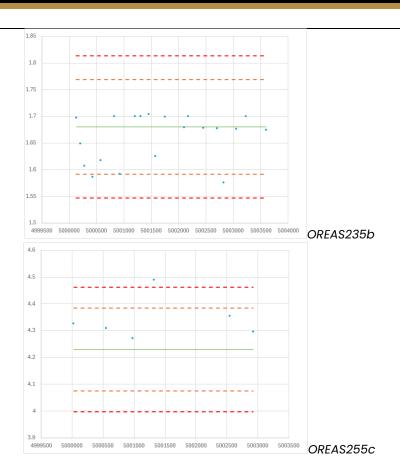
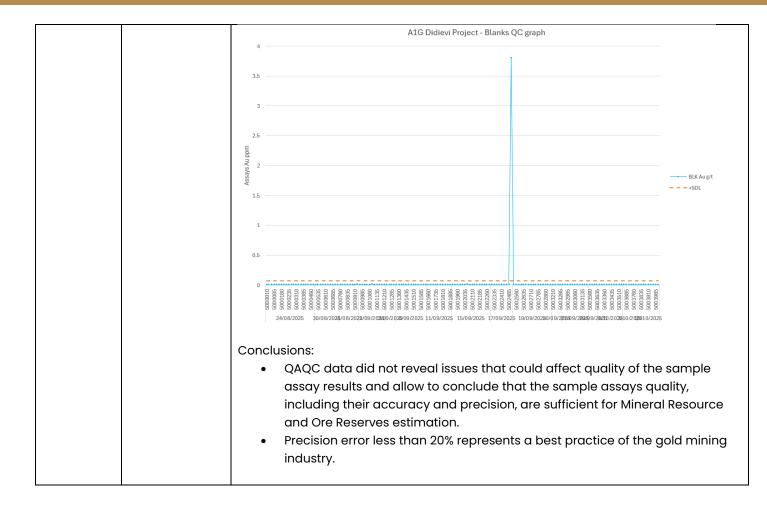



Fig.1.6-1: QAQC diagrams. Blaffo - Guetto deposit. CRM samples analysis results.

The blanks are used systematically with every batch of the samples. One blank sample is inserted for every 25 samples analysed, thus this is a 4% of the blank samples of the total drill core samples analysed, this is the as percentage of the CRM materials used for QAQC analyses.

A fine sand is used as the blank samples, which are inserted with the drill core sample bags. Blank samples did not reveal significant contamination, except the one batch case, which will be reviewed and reported later.

Verification of sampling and assaying (1.7.) The verification of significant intersections by either independent or alternative company personnel.

- The QAQC procedures used at the previous drilling campaigns have included systematic assaying of the sample duplicates (-1mm material) for all samples that have returned the high-grade results including their lower grade halo.
- The significant intersections were additionally verified by assaying the duplicate samples in the external laboratory. This verification was made by delivering duplicate samples to the Intertek Genalysis laboratory, based in Perth, Australia. Results. Comparison of the results has confirmed their good matching. Correlation coefficient of the two sets of the assays is 1.0 and the estimated precision error is 10.4% (CV = 10.4%) (Fig.1.7-1).
- It is intended to use this approach regarding the new drilling data too. It is planned to collect and analyze duplicates samples.

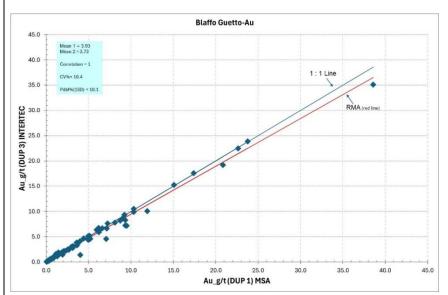


Fig 1.7-1. External duplicates analysis undertaken in 2024. Scatter-diagram of the duplicates analyzed in the Intertek Genalysis laboratory, Perth, Australia plotted vs. original samples analyzed at the MSA laboratory (Yamoussoukro, Cote d'Ivoire). The diagram contains 97 pairs of samples. CV% presents a samples precision estimated using methodology explained in Abzalov (2008, 2016).

twinned holes.
Documentation
of primary
data, data
entry
procedures,
data
verification,
data storage
(physical and

The use of

- Twin holes were not used
- The earlier drilled drillholes (e.g. 2006–2010) have been logged with paper logging sheets and then uploaded into the company database.
- The drillholes logging procedures, used at this phase of drilling consisted of logging done on paper then enter in Exceled. The log data, after their preliminary analysis by the project team, have been then transferred to a database administrator for the final review of the data and uploading into the database.
- Assay results were received from laboratory in Yamoussoukro by email, reviewed by database administrator and uploaded into the companies

	electronic)	database.
	protocols.	African Gold Ltd have used relational database built using the Microsoft ACCESS
	Discuss any adjustment to assay data.	Not applicable. No adjustments were made to the data
Location of data points (1.8.)	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	All drill collars were originally located with a handheld GPS and after drilling were resurveyed.
	estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All data location is in UTM WGS84 Zone30N grid system A detailed digital topography model (DTM) of the deposit was generated using a LiDAR drone survey method. The collar coordinates of the drillholes, reported in this ASX release, are based on the measurements made using the hand-held GPS The collars will be draped on the DTM surface, for controlling the Z coordinate of the collars.
Data spacing and distribution (1.9.)	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve	Drillholes collars are distributed following a grid of approximately 50x50 to 50 x 25m (Fig. 1.9-1).

		T
	estimation	- 281 M - 281
	procedure(s)	. ^
	and	750,000Y
	classifications	•
	applied.	en e
		N
		749,000Y
		-
		× × × × × × × × × × × × × × × × × × ×
		Fig 1.9-1: The collars of the drillholes used for estimation Resources of the Blaffo
		Guetto deposit (MRE2025, ASX 2025, June 23) shown as the pink dots, and the new
		drillholes (black triangles), reported in the current ASX release.
		New drilling, reported in this ASX release, essentially follow the existing
		drillholes grid, that was established at the project during previous
		exploration campaigns, locally extending it and/or infilling (Fig. 1.9-1).
		Depth of the reported drilling was in the range 150.5 – 550.9m, average
		360.4m.
		The given drill spacings and the depth of drilling is matching to that was
		used for estimation Resources in 2025 (MRE2025, ASX 2025, June 23) and is
		considered as sufficient to establish the degree of geological and grade
		continuity appropriate for the Mineral Resource and Ore Reserve estimation
		procedure(s) and classifications applied.
	Whether	Drill core was sampled at the regular intervals, 0.5m to 1.0m, geologically
	sample	monotonous rocks were sampled using 1.5m intervals. Average length of
	compositing	samples 1.1m
	has been	No physical compositing of the samples was used.
	applied.	p, sisa. serripsetang si are sarripted was assa.
Orientation	Whether the	Orientation of the drillhole intersections (Azi and Dip of the drillholes) is
of data in	orientation of	
		adequate for 3D geological modelling and Resource estimation and cannot
relation to	sampling	be source of the sampling bias
geological	achieves	
structure	unbiased	
(1.10.)	sampling of	
	possible	
	structures and	
	the extent to	
	which this is	
L	1	l

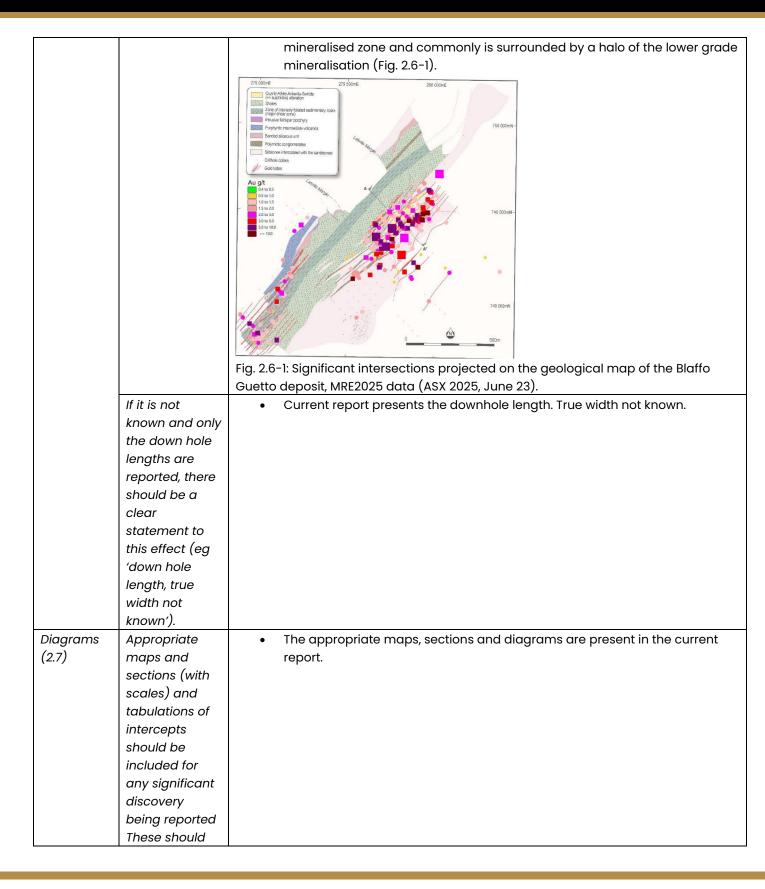
	known, considering the deposit type.	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Orientation of the drillhole intersections is adequate for 3D geological modelling and Resource estimation and cannot be source of the sampling bias
Sample	The measures	 The company personnel have guarded samples during drilling and
security	taken to ensure	sampling.
(1.11.)	sample security	 The collected and safely stored on-site samples have been delivered by the authorised people, usually the company personnel, to the MSA laboratory, where they were securely stored in the laboratory facilities.
Audits or	The results of	The MSA laboratory was visited in 2025 by the company personnel,
reviews	any audits or	including Oehlman (CEO of the AIG), D.Sie (Project geologist), M. Abzalov
(1.12.)	reviews of	(consultant) and C.Raulet (Group Senior Geologist).
	sampling	Laboratory procedures were reviewed by Dr.M.Abzalov and found to match
	techniques and	the mining industry's best practices.
	data.	No audits were completed.

JORC (2012) TABLE 1 Checklist of Assessment and Reporting Criteria Section 2 - Reporting of Exploration Results

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project					
Mineral tenement and land tenure status (2.1)	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	compo Septer	anies – details mber 2019 and s of the permit rmits obtained Cote d'Ivoire Permit type Permis de	are provided in 27 November in a are shown in a and applied but the Date Granted 18 Nov 2019	n ASX rele 2021. the Table by African Area (km²) 391	Duration 4 + 3+ 3 years	2019; 5
		Agboville Sikensi Konahiri Nord Konahiri Sud Koyekro Azaguire Gomon	rescherche (Gold)	25 Oct 2017 19 Oct 2016 12 Jan 2022 Application TBA Application TBA Application TBA Application TBA Application TBA Application TBA	395 397 391 255 290 397 212	4 + 3 + 3 years 4 + 3 + 3 years	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.		are no known ting in the are		g the sec	urity of title or impe	ediments to
Exploration done by other parties (2.2)	Acknowledgme nt and appraisal of exploration by other parties.	Details of exploration by the previous groups has been reported to the ASX in 4 July 2019; 5 September 2019 and 27 November 2021 and briefly summarised here. Didievi Permit – Cote d'Ivoire: Regional surveys by Glencore and Equigold and then by Lihir and Newcrest include geological mapping, surface geochemical sampling, airborne magnetic and radiometric data and remote sensing data. This was done					

	 during 2006 and 2012 and included several exploration campaaignes. Work by Glencore and Equigold focused on the western part of the current permit consisted of acquisition of the high-resolution airborne magnetic and radiometric data, broad (800m x 50m & 200m) spaced soil sampling followed up with infill sampling on 9 discrete areas, limited trenching, rock chip sampling, RAB, RC and diamond drilling. During this time Equigold made two discoveries, namely Blaffo Guetto (BG) and Pranoi. From 2008 the exploration was focused almost exclusively on the Blaffo Gueto, where a total of 312 RC holes and 23 diamond holes were drilled for 26,850m and 4,275m respectively At the Pranoi a total of 73 RAB, 7 RC and 1 diamond hole were drilled for 2,368m, 940m and 350m respectively (best intercept 13.0 at 2.65g/t Au). At Jonny Walker 7 RC holes were drilled and at geochemical anomalies DAS005 and DSA003 10 and 15 RAB holes respectively.
	·
Geology (2.3) Deposit type, geological setting and style of mineralisation.	In Côté d'Ivoire – the area under consideration is situated within the central portion of the Oumé-Fetekro Birimian greenstone belt. The belt is striking North-East to South-West direction. These belts belong to the Proterozoic basement in the Baoulé-Mossi domain of the West African Craton (WAC) formed between 2.2 and 1.9 Ga. The belt is almost 300 km long and 40 to 5km width extends from south of Dabakala (north of the belt) to Divo (south of the belt). Around the parallel 7°, it is divided in two parts. Blaffo Guetto prospect is situated in the southern Oumé-Hiré portion. The supracrustal geology of this greenstone belt, that is present within the prospect area includes schist and quartzite and also sandstone and conglomerates aligned NE-SW and intruded by the different mafic intrusions and the felsic porphyries. Gold lodes are hosted in the intensely altered and deformed rocks that are characterized by broad distribution of the mm-scale stockwork quartz veinlets (Fig. 2.3 – 1) B

Drill hole	A summary of	Current ASX release presents 7 recently completed diamond core drillholes Table 2.4-1: Location of the drill hole collars (UTM, WGS84, zone30 North) and the								
Information (2.4)	all information material to the	Table 2.4-1: depth of dri		the drill h	ole colla	rs (UTM,	WGS84, zoi	ne30	North	n) and the
(-7/	understanding	HOLE_ID	ТҮРЕ	EAST	NORTH	RL	LENGTH (m)	DIP	AZI	Status
	of the	BGDD25-001	Diamond core	279903	749116	209	423	-55	317	Complete
	exploration	BGDD25-002	Diamond core	279960	749201	206	434.3	-55	317	Complete
	results	BGDD25-003	Diamond core	280043	749258	212	346.8	-55	317	Complete
	including a	BGDD25-004	Diamond core	280050	749324	220	325.2	-55	317	Complete
	tabulation of	BGDD25-005	Diamond core	280056	749391	229	276.5	-55	317	Complete
	the following	BGDD25-006	Diamond core	280019	749467	239	216.3	-55	317	Complete
	information for	BGDD25-007	Diamond core	279830	748937	217	449.7	-55	317	Complete
	all Material drill	BGDD25-008	Diamond core	279837	749003	219	440	-55	317	Complete
	holes:	BGDD25-009	Diamond core	279767	748932	223	430	-55	317	Complete
		BGDD25-010	Diamond core	279770	749037	225	420	-55	317	Complete
		BGDD25-011	Diamond core	279856	749056	216	420	-55	317	Assays pending
		BGDD25-012	Diamond core	279931	749526	247	150	-55	317	Complete
		BGDD25-013	Diamond core	280024	749535	255	200	-55	317	Assays pending
		BGDD25-014	Diamond core	279783	748804	217	590	-55	317	Assays
		BGDD25-015	Diamond core	279699	748858	232	363	-55	317	pending Drilling
		BGDD25-016	Diamond core	279923	748984	209	298	-55	317	Drilling
						Total	5,783			
						Average	361			
	Easting and Northing of the drill hole collar.	This is presented in the table 2.4-1.								
	Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar.	• This	is presented	d in the to	uble 2.4-1	•				
	dip and azimuth of the hole.	The reported drillholes were drilled toward north-east, 317° azimuth, dipping at -55°.								
	down hole length and interception depth	 Gold mineralisation was intersected at the depth changing from a close to the surface (Drillhole BGDD25-004, intersection 3.5m@0.48g/t Au from 9.3m) to 391.4m (Drillhole BGDD25-004, intersection 3.5m@0.48g/t Au from 9.3m) (Table 2.4-2). List of the intersections was presented in the body of the ASX report 								
	hole length.	• Length is in the range of 150.5 – 550.9m, average 360.4m (Table 2.4-1).								



Data	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting	Not applicable. All relevant information is included in the current report Mineralised intercepts are defined on the drilled cross-sections where
aggregatio n methods (2.5)	Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	grade is >0.5g/t Au and thickness >2m as these intercepts can be correlated between cross-sections presenting a set of the continues mineralised zone in the context of this mineralised system. • Mineralised intersections are defined using 0.5 g/t Au as the cut-off value • Intersections can include internal dilution. Continues dilution should be not more than 2 m, more dilution is only allowed locally by hand when geological continuity is proven and not impacting significantly the overall composite grade • Minimum intercept width is 2 m • Minimum intercept grade : 0.5 g/t Au • High-grade cutting was NOT applied for estimating the mineralised intersections grade.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade	 Not applicable. The samples were from 0.5 to 1,5m long, with a majority of the samples fall into the range 0.8-1.2m (Fig. 2.5-1) Analysis of the data did not reveal relationships of the high-grade assays with the certain length classes of the samples (Fig. 2.5-1).

	results, the	1000
	procedure	
	used for such	100
	aggregation	10
	should be	
	stated and	Au, g/t
	some typical	
	examples of	
	such	0.01
	aggregations	
	should be	0.001 0 0.5 1 1.5 2
	shown in detail.	Length, m
	The a	Fig. 2.5-1: The grade (Au g/t) of the samples vs. their length (m).
	The	Not applicable. Only gold grade is reported, metal equivalents were not
	assumptions	estimated.
	used for any	
	reporting of	
	metal . , .	
	equivalent	
	values should	
	be clearly	
	stated.	
Relationshi	These	The relationship between mineralisation widths and intercept lengths is
p between	relationships	unclear.
mineralisati	are particularly	Analysis of these relationships was obscured by including into intersections
on widths	important in	their internal waste intervals, and was complicated by an excessive scatter
and	the reporting of	of the grade and thickness values.
intercept	Exploration	
lengths	Results.	
(2.6)	If the geometry	The geometry of the mineralisation was interpreted and used for
	of the	construction of the wireframes for the MRE2025 Resource estimate (ASX
	mineralisation	2025, June 23). Based on the MRE2025 model, the gold lodes are striking
	with respect to	toward the North-East (Fig. 2.6-1) with the average strike azimuth
	the drill hole	approximately 43° and dipping steeply, close to a vertically down. Locally,
	angle is known,	the dips can deviate toward the north-west and/or south -east, which is
	its nature	caused by the anastomosing shears surrounding the rigid blocks of the
	should be	porphyry intrusions and also could be caused by folding of the host strata.
	reported.	The latter was inferred from presence of the parasitic folds, which were
		deduced from the variable directions of the foliations observed in the drill
		core.
		In general, the reported drilling intersects the lodes at the angles varying in
		the range of 60° - 90° (MRE2025, ASX 2025, June 23), hence length of the
		intercept intervals locally can exceed the actual thickness of the lodes.
		High-grade mineralisation is distributed in the central part of the

	T	
	include, but not be limited to a	
	plan view of	
	drill hole collar	
	locations and	
	appropriate	
	sectional views.	
Balanced	Where	The current announcement that reports a new drilling data obtained at the
reporting	comprehensive	Blaffo Guetto deposit is made as a balanced reporting.
(2.8)	reporting of all	The report includes information of all drillholes, drilled and completed after
	Exploration	the MRE2025 (ASX 2025, June 23), when mineral Resources of the deposit
	Results is not	were estimated and reported.
	practicable,	
	representative	
	reporting of	
	both low and	
	high grades	
	and/or widths	
	should be	
	practiced to	
	avoid	
	misleading	
	reporting of	
	Exploration Results.	
Other	Other	All relevant data have been reported with MRE2025 Resource estimate (ASX)
substantive	exploration	2025, June 23). No new data, except the presented here drillholes, were
exploration	data, if	obtained since the last report
data (2.9)	meaningful	
(=,=,	and material,	
	should be	
	reported	
	including (but	
	not limited to):	
	geological	
	observations;	
	geophysical	
	survey results;	
	geochemical	
	survey results;	
	bulk samples –	
	size and	
	method of	

_	1	
	treatment;	
	metallurgical	
	test results;	
	bulk density,	
	groundwater,	
	geotechnical	
	and rock	
	characteristics;	
	potential	
	deleterious or	
	contaminating	
	substances.	
Further	The nature and	African Gold Ltd is planning additional exploration activities at the Blaffo Guetto
work (2.10)	scale of	prospect, with the objective of further increasing the existing Mineral Resource base.
(=)	planned further	Exploration programs scheduled for 2025 will include a combination of techniques,
	work (eg tests	such as:
	for lateral	Diamond and Reverse Circulation (RC) drilling to test extensions of known
	extensions or	mineralisation and identify new zones (Figs. 2.10-1 and 2.10-2).
	depth	Trinicianoation and labitary flow 201100 (11gb. 2.10 Tana 2.10 2).
	extensions or	
	large-scale	
	step-out	
	drilling).	
	Diagrams	300 BIO
	clearly	27962
	highlighting the areas of	History Williams
		-74950N
	possible	
	extensions,	
	including the	
	main	Augh
	geological	40.5
	interpretations	749000N
	and future	3.0-5.0
	drilling areas,	■ >=50
	provided this	BLAFFO GUETTO DEPOSIT & AFRICANGOLD RESOURCE ZONE BLAFFO GUETTO DEPOSIT RESOURCE ZONE
	information is	Mineral Resource Contours Geology
	not	Strongly follaned dark colourant rocks within 50-70m wide shear zone Protoluth - sediments O 250 Follaned dark colourant rocks within
	commercially	metres Sitstone and Sandstones Interbedded
	sensitive.	Fig. 2.10-1: Generalised map of the Blaffo Guetto deposit showing the interpreted
		high grade mineralised trends representing the brown-field exploration targets of
		the post MRE2025 program
1	I.	· · · · · · · · · · · · · · · · · · ·

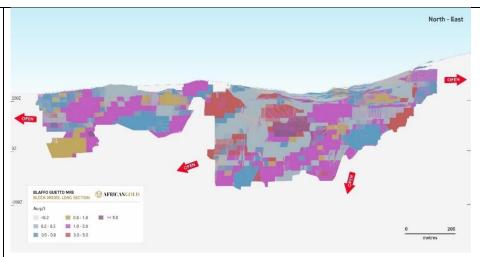


Fig. 2.10-2: Long section of the Blaffo Guetto deposit showing grade of the MRE2025 block-model and the interpreted trends of the high-grade gold mineralisation (shoots).