Aeris
RESOURCES

STOCKMAN PROJECT

CURRAWONG AND WILGA DEPOSITS MINERAL RESOURCE UPDATES

- Updated Mineral Resource Estimates (MRE) for the Currawong and Wilga deposits - based on revised geological interpretation and updated metallurgy/metal price assumptions
\% changes in current 2023 MRE compared with previous MRE

Deposit	Tonnes	Contained copper metal	Contained zinc metal	Contained gold metal	Contained silver metal
Currawong	$+9 \%$	$+14 \%$	$+6 \%$	$+5 \%$	$+4 \%$
Wilga	0%	-10%	-14%	-7%	-10%
Currawong/Wilga combined	$+7 \%$	$+6 \%$	0%	$+4 \%$	$+1 \%$

- Currawong:
- $11,300 \mathrm{kt}$ at 2.06% copper, 3.90% zinc, $1.10 \mathrm{~g} / \mathrm{t}$ gold and $38.4 \mathrm{~g} / \dagger$ silver, with $>90 \%$ categorised as Indicated
- Containing 232 kt of copper metal, 439 kt of zinc metal, 397koz gold metal and 13.9 Moz of silver metal
- Wilga:
- 3,500kt at 2.16% copper, 4.29% zinc, $0.43 \mathrm{~g} / \mathrm{t}$ gold and $28.2 \mathrm{~g} / \dagger$ silver, with $>90 \%$ categorised as Indicated
- Containing 76 kt of copper metal, 152 kt of zinc metal, 48 koz gold metal and 3.2 Moz of silver metal
- Significant potential to increase the Mineral Resource with additional drilling

Established Australian copper-gold producer and explorer, Aeris Resources Limited (ASX: AIS) (Aeris or the Company) is pleased to announce an updated JORC 2012 Mineral Resource estimate for the Currawong and Wilga deposits, located within the Company's 100\% owned Stockman Project (Stockman or the Project) in Victoria.
Aeris' Executive Chairman, Andre Labuschagne, said "We are very pleased with how the Stockman Project is progressing. Since we acquired Stockman as part of the Round Oak Minerals acquisition in July 2022 our technical teams have significantly advanced the Project."
"The updated Mineral Resource estimates have reinforced our view when acquiring the Project that the geology for both the Currawong and Wilga deposits is well understood and robust. These updated estimates have also enabled us to optimise the mine plans for each deposit, particularly for Currawong."

Stockman Project Overview

The Stockman Project is an advanced polymetallic development project located approximately 300 km north-east of Melbourne in the East Gippsland region of Victoria. The Project contains the Currawong and Wilga deposits, which are the subject of this announcement, and the Bigfoot and Eureka satellite deposits. Bigfoot and Eureka are not discussed further in this announcement.

Figure 1: Stockman Project tenement package

Currawong and Wilga Mineral Resource Estimate

The updated MRE for the Currawong and Wilga deposits is primarily based on a revised geological interpretation, along with updated metallurgical and metal price assumptions.
The Currawong and Wilga Mineral Resource Estimates collectively total 14,800kt at $2.09 \% \mathrm{Cu}, 4.00 \% \mathrm{Zn}, 0.94 \mathrm{~g} / \dagger \mathrm{Au}$ and $36 \mathrm{~g} / \dagger \mathrm{Ag}$ for 308 kt of Cu metal, 591 t of Zn metal, 445 koz Au metal and 17.1 Moz of Ag metal (Table 1, Figures 1-2).
Table 1: 2023 Currawong and Wilga combined reported Mineral Resource with a NSR cut-off of USD 100/t.

Deposit	Category	Tonnes	Grade				Contained Metal			
		('000)	Cu	Zn	Au	Ag	kt	kt	koz	koz
			(\%)	(\%)	(g/t)	(g/t)	Cu	Zn	Au	Ag
Currawong	Measured	-	-	-	-	-	-	-	-	-
	Indicated	10,200	2.15	4.06	1.14	40	219	415	374	13,000
	Inferred	1,000	1.24	2.32	0.68	26	13	24	22	900
	Total	11,300	2.06	3.90	1.10	38	232	439	397	13,900
Wilga	Measured	-	-	-	-	-	-	-	-	-
	Indicated	3,200	2.16	4.57	0.45	29	69	146	46	3,000
	Inferred	300	2.12	1.69	0.22	21	7	6	2	200
	Total	3,500	2.16	4.29	0.43	28	76	152	48	3,200
Total Indicated		13,400	2.15	4.18	0.97	37	288	561	420	16,000
Total Inferred		1,400	1.45	2.17	0.57	25	20	30	25	1,100
Grand Total		14,800	2.09	4.00	0.94	36	308	591	445	17,100

Notes:

1. Dr Andrew Fowler MAusIMM CP(Geo) takes Competent Person responsibility for this Mineral Resource Estimate in accordance with the JORC Code (2012).
2. The cut-off grade applied to the MRE has been derived from the Net Smelter Return (NSR) calculations. The MRE metal prices used were Cu: USD 9,110/t, Zn: USD 2,660/t, Au: USD 1,870/oz, Ag: USD 23.50/oz
3. The Competent Person considers that the Mineral Resource has reasonable prospects for eventual economic extraction at the cut-off grade specified and a selective underground mining method.
4. Numbers may not sum due to rounding.

The previous MRE reported for the Currawong and Wilga Deposits on 18 April 2023, with an effective date of 31 December 2022 is provided in Table 2.

Table 2: 2022 Currawong and Wilga combined reported Mineral Resource with a NSR cut-off of USD 100/t.

Deposit	Category	Tonnes	Grade				Contained Metal			
		('000)	Cu	Zn	Au	Ag	kt	kt	koz	koz
			(\%)	(\%)	(g/t)	(g/t)	Cu	Zn	Au	Ag
Currawong	Measured	-	-	-	-	-	-	-	-	-
	Indicated	9,500	2.00	4.20	1.20	42	194	397	365	12,800
	Inferred	800	1.40	2.00	0.50	23	11	16	12	600
	Total	10,300	2.00	4.00	1.10	40	204	413	377	13,400
Wilga	Measured	-	-	-	-	-	-	-	-	-
	Indicated	2,900	2.10	4.90	0.50	31	60	141	43	2,800
	Inferred	700	3.80	5.60	0.40	34	25	37	9	700
	Total	3,500	2.40	5.10	0.50	32	85	177	52	3,600
Total Indicated		12,400	2.05	4.34	1.02	39	254	538	408	15,600
Total Inferred		1,400	2.50	3.69	0.45	28	36	53	21	1,300
Grand Total		13,800	2.10	4.27	0.96	38	290	591	429	16,900

Note: Refer to ASX Announcement "Group Mineral Resource and Ore Reserve Statement" dated 18th April 2023.
The MRE for the Currawong and Wilga deposits has been estimated based on 489 surface and underground diamond drill holes from an acQuire database developed by ROM and maintained by Aeris Resources.
The database underwent a thorough audit by Aeris before being accepted as input to this MRE update. All underground face samples and probing sludge holes were excluded from the MRE due to uncertainty in their locational accuracy, assay QAQC and/or sample quality.
The MRE comprises in-situ massive sulphide, stringer sulphide and disseminated sulphide mineralisation in the Currawong and Wilga deposits. The MRE is considered to have reasonable prospects for eventual economic extraction by selective underground mining methods at the specified cut-off grade.

The cut-off grade applied to the MRE has been derived from a Net Smelter Return (NSR) calculation. This approach is consistent with the Company's protocols at each polymetallic deposit within the portfolio.

The MRE for the Currawong and Wilga deposits contains Indicated and Inferred Resource categories. The Resource classification was developed in accordance with the JORC Code (2012) definitions, and considered the drill spacing, confidence in the interpretation in three dimensions (3D), the quality of the resulting grade estimate, the quality of the input data and the number of informing drill holes used in the estimate.

The resulting Indicated category is approximately equivalent to $\leq 40 \mathrm{~m} \times 50 \mathrm{~m}$ spaced drilling. The Inferred mineralisation has been interpreted from up to $80 \mathrm{~m} \times$ 80 m spaced drilling, consistent with the geological understanding and interpreted continuity of the Currawong and Wilga deposits.

Figure 1 - Long section of the Currawong massive sulphide lenses displaying NSR. View north. Note the mineralised lenses are stacked.

Note: Block model coloured by NSR, drill hole traces are black lines.
Figure 2 - Long section of the Wilga massive sulphide lens displaying NSR. View North. Mined voids displayed as grey solids.

Note: Block model coloured by NSR, drill hole traces are black lines.

Currawong and Wilga MRE Changes

The material differences between the updated 2023 MRE and the previously reported MRE include an updated geological interpretation, revised metallurgical recovery assumptions, updated metal prices assumptions and the adoption of a revised and more conservative sterilisation protocol at the Wilga deposit. The 2023 revised metallurgical recovery assumptions incorporate non-linear grade-recovery algorithms to NSR calculations, with the algorithms created from past laboratory testwork results. The previous NSR calculations were based off global average recoveries and did not account for changes in mineralisation style or grade. The revised calculations allow for better description of individual block characteristics and are considered an improvement on the previous calculations. The net result is a modest increase in the combined total reportable MRE for most metals reported (refer to Table 3 and Figures 3-8)
Table 3 Percentage changes in current 2023 MRE compared with previous 2022 MRE

Deposit	Tonnes	Contained copper metal	Contained zinc metal	Contained gold metal	Contained silver metal
Currawong	$+9 \%$	$+14 \%$	$+6 \%$	$+5 \%$	$+4 \%$
Wilga	0%	-10%	-14%	-7%	-10%
Currawong/Wilga combined	$+7 \%$	$+6 \%$	0%	$+4 \%$	$+1 \%$

Figure 3 - Currawong tonnage changes between the 2023 and 2022 MREs.
Stockman Currawong Mineral Resource Tonnage Changes

Figure 4 - Currawong Cu metal changes between the 2023 and 2022 MREs.
Stockman Currawong Mineral Resource Copper Metal Changes

Figure 5 - Currawong Zn metal changes between the 2023 and 2022 MREs.
Stockman Currawong Mineral Resource Zinc Metal Changes

Figure 6 - Wilga tonnage changes between the 2023 and 2022 MREs.
Stockman Wilga Mineral Resource Tonnage Changes

Figure 7 - Wilga Cu metal changes between the 2023 and 2022 MREs.

Figure 8 - Wilga Zn metal changes between the 2023 and 2022 MREs.
Stockman Wilga Mineral Resource Zinc Metal Changes

Project History

In the 1970s, Western Mining Corporation Limited (WMC) undertook extensive exploration at the Stockman Project, leading to the discovery of the Wilga (1978) and Currawong (1979) deposits.
The Project changed ownership over the years, passing through Macquarie Resources Limited (Macquarie), Denehurst Limited (Denehurst), Austminex NL (Austminex), Jabiru Metals Limited (Jabiru), Independence Group NL (IGO), Round Oak Minerals Pty Ltd and finally, Aeris. Denehurst Limited, initially a 50% joint venture managing partner with Macquarie in 1991, eventually bought Macquarie's 50\% interest in 1995. Mining at the Project began at the Wilga high-grade Cu mineralisation in 1992, switched to high-grade Zn mineralisation in 1996, and finished later that year after extracting 955.6 kt at a production grade of $6.04 \% \mathrm{Cu}$ and 8.68% Zn . Denehurst went into voluntary receivership in 1998 and no further mining took place.

Austminex acquired the Project from Denehurst's administrator, conducted a drilling program, and produced a feasibility study in 2001 but opted out of the Project that year. In 2003, a bushfire damaged the property, resulting in the loss of on-site paper records. The Victorian State government spent $\$ 5.8$ million cleaning up the property, in the upper catchment of the Tambo River, by 2007.

Jabiru acquired the project from the Victorian Government in July 2007, renaming it the Stockman Project. In 2011, IGO completed a takeover of Jabiru and updated the Wilga and Currawong Mineral Resource Estimates (MRE) in 2012, following an extensive diamond drilling program.

IGO entered into an agreement in June 2017 to sell the Project to CopperChem Limited (CCL), a subsidiary of Washington H. Soul Pattinson and Company Limited (WHSP). In 2018, CCL was renamed Round Oak Minerals Pty Ltd (ROM), becoming the managing entity of the Stockman Project. Aeris subsequently took ownership of the Project when it acquired ROM in 2022. Aeris published the ROM 2022 MRE in the Aeris Group Mineral Resource and Ore Reserve statement with an effective date of 31 December 2022¹

Exploration Prospectivity

The Stockman project remains highly prospective for the discovery of further VMS deposits. The tenement package remains largely under-explored, with multiple surface geochemical and geophysical anomalies yet to be drill tested.

At each of the four known deposits there remains significant potential to increase the mineralised footprint with further drilling, including downhole electromagnetic surveying, targeting extensions to known mineralisation and to define new sulphide lenses.

Regional Geology

The Wilga and Currawong Cu-Zn volcanic hosted massive sulphide (VHMS) deposits are found within a strongly deformed Ordovician-Silurian volcano-sedimentary sequence, arranged as a series of fault-bounded belts that trend north eastward. This volcano-sedimentary sequence is a component of the broader Lachlan Fold Belt, which spans New South Wales, Victoria, the Australian Capital Territory (ACT) and Tasmania. Unconformably overlying these rocks is a gently folded Devonian succession, encompassing the Snowy River Volcanics and the Mt Tambo Group. The Ordovician-Silurian sequence is also intruded by significant Silurian-age granitoid intrusions.

The VHMS deposits are hosted within the Gibson's Folly Formation comprising lenticular lava flows composed of basalt, andesite, and dacite, along with associated volcaniclastic rocks, encased within a fine-grained turbiditic sedimentary package (Figure 9). The Gibson's Folly Formation is upward of 500 m thick.

[^0]Figure 9 - Stockman Regional Geology

Local Geology

The Gibson's Folly Formation includes basaltic to rhyolitic rocks with a continuous magmatic evolution trend. However, andesitic coherent and volcaniclastic rocks exhibit significant variability in $\mathrm{Zr} / \mathrm{TiO} 2$ values and SiO 2 content, likely influenced by magmatic differentiation and interaction with a quartz-rich silicic magma. Evidence supporting this hypothesis includes xenocrystic quartz in certain coherent andesitic units and silicic volcanic clasts within volcaniclastic rocks of andesitic composition.

The Currawong and Wilga polymetallic deposits contain Cu-Zn-Pb-Au-Ag within pyritic lenses, enveloped by and laterally continuous with intensely altered zones (predominately chlorite $+/-$ sericite). Geological events relevant to mineralisation include a basin-forming extensional event that formed the Cowombat Trough, the occurrence of dacitic to basaltic volcanics within the Gibson's Folly Formation, and subsequent deformation and alteration post-ore deposition. The VHMS deposits formed via hydrothermal activity during the formation of the Cowombat Trough. The sulphide lenses are interpreted to form as sub-surface replacement deposits rather than exhalative accumulations on the sea floor.

The rocks hosting mineralisation exhibit two distinct groups: pyrite-rich lithologies associated with massive sulphide lenses and less pyritic lithologies associated with alteration zones. Primary minerals include pyrite, sphalerite, chalcopyrite, galena, arsenopyrite, magnetite, quartz, calcite, and chlorite, forming various compositions and textures such as massive, layered, brecciated, or hydrothermally brecciated mineralisation.

Massive pyrite, banded pyrite, sphalerite-banded pyrite, and pyrite with chalcopyrite and chlorite patches or bands characterise the primary rock types within massive sulphide pods. Sphalerite-rich bands, often deformed, align with larger-scale sulphide bodies, suggesting deposition or replacement layers. Chalcopyrite-rich massive sulphides with chlorite typically result from the replacement of pre-existing sulphides, occurring in bands parallel to stratigraphy or within veins. Magnetite, as an accessory mineral, co-precipitates with pyrite, forming lenses and pods that may undergo intense recrystallisation.

Drilling and Sampling

Various companies have conducted drilling at the Currawong and Wilga deposits, and nearby areas over the years, and a variety of drilling methods have been employed at the Project since the 1970s. Aeris notes the following:

- Currawong: 237 holes for a total of 67,785m of drilling; and
- Wilga: 277 holes for 28,674 m of drilling, including 23 holes for $2,528 \mathrm{~m}$ drilled from underground sites
including:
- Western Mining Corporation (WMC) drilling 107 holes between 1976 and 1984 to collect 47.6 mm diameter (NQ) cores, and 36.4 mm diameter (BQ) cores from deeper tails;
- Macquarie Resources Ltd drilled 78 holes between 1986 and 1990 collecting $63.5 \mathrm{~mm}(\mathrm{HQ})$ cores with NQ tails;
- Macquarie also drilled 40 holes from underground sites collecting 35.6 mm diameter (LTK46) cores;
- Denehurst Ltd drilled 100 holes with a range of core diameters including LTK45, 50.6mm diameter (NQ2), BQ, 36.6mm diameter (BX) and BQ;
- Austminex NL drilled 26 holes at Currawong in 2000 and 2001, sometimes using RC pre-collars. The core collected was triple tube 61.1 mm diameter (HQ3) or 45.0mm diameter (NQ3) tails;
- Jabiru Metals Ltd (JML) commenced drilling in 2008 using 85 mm diameter (PQ) core for top-of holes, then HQ tails. Wedge holes were all drilled using a NQ2 core diameter;
- Independence Group NL completed a further drill program of 46 holes in 2011 and 2012 prior to updating the Mineral Resource, mainly NQ2 diameter for definition work and HQ for metallurgical sample collection and geotechnical logging and testing; and
- Round Oak Minerals Pty Ltd drilled an additional 16 drill holes at NQ2 diameter

Ten IGO holes were drilled after the 2012 Mineral Resource estimate and ROM drilled 16 infill drill holes in 2021 over the Wilga and Currawong deposits. The additional drill hole information was designed to improve geological interpretation and confidence along with providing metallurgical information at Currawong. Results from the program contributed to an updated database and 3D geological interpretation modelling which formed the basis of the current MRE. Appendices A and B contain a list of the drill holes and significant intercepts used in the MRE.
Details of pre-IGO/JML sample preparation are not known but are expected to have been consistent with industry practices in place at the time of the various drill programs.

IGO/JML Sampling and Preparation:

- A geologist marked out DD core for sampling intervals based on geological units, with intervals ranging from 0.1 m to 1.5 m , with a target interval of 1 m ;
- Core samples were oven dried then crushed in a jaw-crusher with recent core crushed to a particle size distribution (PSD) <10mm; and
- The jaw-crush lot was then pulverised to a PSD of 85% passing 75 microns.

ROM Sampling and Preparation:

- Core sampling intervals were based on geological boundaries varying between 10 cm and 1.4 m , with the majority 1 m in length;
- The samples were dried at 105C for a minimum of 5 hours. Core samples were crushed using an Essa JC2500 to produce a product of <6mm particle size. If
the sample was $>3 \mathrm{~kg}$, it was rotary split in a Boyd crusher to generate a sample $<3 \mathrm{~kg}$ and placed in an LM5 pulveriser; and
- The pulverising stage generated an 85% passing 75 micron particle size sample. A pulp was taken from the bowl and the remainder of the sample removed and retained as a residue. Every 50th sample had an additional portion removed from the bowl and sieved at 75um to confirm quality of product.

Similar to the drilling and sample preparation methods, the assay methods have varied over the years, however Aeris considers that they were conducted at reputable laboratories including the WMC internal laboratory, Amdel Frewville, Analabs, Classic Comlabs, Classic Thebarton, ALS Bendigo, Amdel Adelaide, and Genalysis Adelaide.
A twin hole study completed by Aeris comparing the various drilling campaigns found bias between the older and newer campaigns and concluded that the older campaigns may have over-reported the lower copper grades ($<0.6 \% \mathrm{Cu}$) and under-reported the higher copper grades above $2 \% \mathrm{Cu}$. This has been considered in the MRE Classification.

Bulk Density

There is a substantial amount of density data available which were collected by a variety of methods including pycnometer. The bulk density measured by water immersion and the specific gravity measured by pycnometer density data are comparable with each other, and all available density data was used for estimation.

Mineral Resource Domains

The Currawong deposit consists of eight spatially separate fault bound mineralised areas consisting of ten Massive Sulphide, five Stringer Sulphide, six Disseminated Sulphide and two Sheared Sulphide mineralised domains as follows (see Figures 10 and 11):

- A area - consists of a single Massive Sulphide and three Stringer Sulphide domains located along the northern most margin of the deposit with moderate to steep dips to the north;
- B area - a Massive Sulphide and two disseminated lenses located in the northeastern-most area of the deposit with moderate to steep dips to the north northwest;
- B Lower area - a Massive Sulphide and two disseminated lenses within the stratigraphic footwall of the B lens located in the northeastern area of the deposit, with moderate to steep dips to the north northwest;
- J area (two Massive Sulphide) and K area (two Massive Sulphide, one Disseminated Sulphide mineralised lens) - all dip moderate to steeply towards the northwest and have considerable horizontal widths to the mineralisation.

These are in the central area of the Currawong deposit;

- M area - immediately south of the J and K lens area, occurs as a massive, stringer and disseminated lenses located just south of the central deposit area with moderate dips to the north;
- M Upper area - located in the southeast of the deposit area consist of a single, Massive Sulphide lens that dips moderately to the north,
- M Lower area - located in the western and southwestern part of the deposit area and consists of a single massive and single stringer domain, dipping moderately to steeply towards the north; and
- K HW Shear and Shear Zone - There were two sheared sulphide domains located amongst the central J and K areas.

The Wilga deposit consists of a single, flat to moderately north dipping Massive Sulphide lens, with a central high grade (+10\%) copper core, and a large high-grade (+3\%) zinc zone (see Figures 12 and 13). There is also a much smaller high-grade zinc domain associated along the hangingwall of the Massive Sulphide lens. The stringer domain extends along the western margin, extending around the northern contact, before pinching out along the mid-eastern margin of the Massive Sulphide domain. The Massive Sulphide and stringer domain exhibits sound geological continuity. The Massive Sulphide exhibits good grade continuity, and while the grade continuity for the stringer is reasonable, it is more variable than that observed in the Massive Sulphide. In the immediate stratigraphic hangingwall and footwall of the Massive Sulphide lens are parallel disseminated mineralisation which is more fragmented/discontinuous than either the massive or stringer mineralisation.

Figure 10 - Plan view of Currawong Mineral Resource domain wireframes and drill holes used to inform the MRE

Figure 11 - Perspective view (looking south-west) of Currawong Mineral Resource domain wireframes and drill holes used to inform the MRE

Figure 12 - Plan view of Wilga Mineral Resource domain wireframes and drill holes used to inform the MRE. Mined voids displayed as grey solids.

Figure 13 - Perspective view (looking south west) of Wilga Mineral Resource domain wireframes and drill holes used to inform the MRE. Mined voids displayed as grey solids.

Mineral Resource Estimation

Aeris notes the following with respect to the estimation of grades and bulk density:

- All modelling and estimation was completed using Datamine Studio Pro (v1.11.300). Both the Currawong and Wilga deposits used a block model with a parent cell size of 10 mE by 5 mN by 2.5 mRL , which was derived from the available drill hole spacing in combination with kriging neighbourhood analysis;
- As the mineralisation exhibited low coefficients of variation (CV) and skew, ordinary kriging was selected as the appropriate grade estimation technique. Composite samples on a nominally 1.0 m length were used for estimation. The need for top cuts was assessed graphically and by referencing the impact on the CV. Of the 270 domain and element combinations, only 37 (two copper, eight lead, one zinc, one silver, seventeen gold, seven arsenic and one density combination) required a top cut;
- All domain boundaries except for antimony were treated as hard boundaries. For antimony, the mineralised domain boundaries were treated as soft boundaries and only the mineralised waste boundary was treated as a hard boundary;
- All estimates except antimony were estimated using the Datamine dynamic anisotropy (DA) function to control the search direction, which was orientated into the plane of the mineralisation;
- All estimates used a three-pass search approach, with the first and second pass using 8 to 28 samples, and the third pass using 4 to 14 samples;
- At the Wilga deposit, the Massive Sulphide and stringer domains used a primary search of 35 m by 35 m by 10 m which was doubled in the second pass and then tripled in the third pass. The two Wilga deposit disseminated domains used a primary search of 35 m by 35 m by 12.5 m , which was doubled in the second pass, and then tripled in the third pass;
- For the estimation of antimony at the Wilga deposit, the search was orientated parallel to the antimony variogram, using a primary search of 50 m by 50 m by 20 m , which was doubled in the second pass and tripled in the third pass. All Wilga deposit estimates, except antimony, employed a restriction of 4 samples per drill hole;
- At the Currawong deposit, all domains except for the Massive Sulphide low grade sub-domains used a primary search of 35 m by 35 m by 7.5 m , which was doubled for the second pass. The third pass used a maximum search distance of 125 m by 125 m by 26.75 m . Domains at the Currawong deposit that were informed by consistently spaced drilling sections used a restriction of 4 samples per drill hole. Domains informed by either variably spaced and/or locally clustered drilling did not use a restriction on the number of samples per drill hole;
- At Currawong, the Massive Sulphide low grade copper/zinc sub-domains used a primary search of 50 m by 50 m by 7.5 m , which was doubled for the second pass. The third search pass used a search distance of 178 m by 178 m by 26.75 m , with no restriction on the number of samples per drill hole;
- All estimates at both deposits used block discretisation of $3 X$ by $2 Y$ by $2 Z$;
- For the estimation of antimony at the Wilga deposit, the search was orientated parallel to the antimony variogram, and used a primary search of 50 m by 50 m by 20 m , which was doubled for the second and then tripled for the third search pass; and
- For the estimation of antimony at the Currawong deposit, the search was orientated parallel to the antimony variogram, and used a primary search distance of 150 m by 135 m by 75 m , then 225 m by 202.5 m by 112.5 m for the second pass and then 300 m by 270 m by 150 m for the third pass.
The final estimates were validated by comparing the proportion of the wireframe that the block model fills, comparing naïve, cell declustered and polygonal declustered statistics with the block model average grade, visual validation, and grade trend plots. There is good correlation for most domains and variables. The Competent Person considered the results of the validation were satisfactory for the resource classifications applied.

Mineral Resource Classification

The Currawong and Wilga Mineral Resources have been classified as Indicated and Inferred. The Mineral Resources has been reported in accordance with the guidelines of the JORC Code (2012) definitions, and was based on:

- The drill spacing;
- The confidence in the interpretation in three dimensions;
- The quality of the resulting grade estimate;
- The quality of the input data; and
- The number of informing drill holes used in the estimate.

Indicated Mineral Resource is defined by a nominal $\leq 40 \mathrm{~m} \times 540 \mathrm{~m}$. Inferred Mineral Resource is defined by a nominal $\leq 80 \mathrm{~m} \times 50 \mathrm{~m}$ drill spacing.
An overview of the MRE Classifications for the massive sulphide lenses are displayed in Figures 14 and 15.

Figure 14 - Long section of Currawong massive sulphide lenses displaying MRE classification. View north. Note the mineralised lenses are stacked.

Figure 15 - Long section of Wilga massive sulphide lens displaying MRE classification. Mined voids displayed as grey solids. View north.

Cut-off Grade, Mining and Metallurgy

The Mineral Resources are reported via a Net Smelter Return (NSR) cut-off, which is considered appropriate for underground mining methods and is in line with the reporting approach at other polymetallic deposits within the Company's portfolio.

Metal prices of USD9,110/t for Cu, USD2,660/t for Zn , USD1,870/oz for AU and USD23.50/oz for Ag and an FX rate of 0.70 have been used in the calculation of the NSR values.

The recoveries used the Net Smelter Return calculation are derived from non-linear equations that are based on a range of laboratory test results and are dependent on mineralisation type, head grade and end-product quality (Cu concentrate or Zn concentrate).

This announcement is authorised for lodgement by:

Andre Labuschagne
Executive Chairman
ENDS

For further information, please contact:

Andre Labuschagne
Executive Chairman
Tel: +61 730346200

Stefan Edelman
General Manager - Corporate Development investorrelations@aerisresources.com.au

[^1]
Abstract

About Aeris Aeris Resources is a mid-tier base and precious metals producer. Its copper dominant portfolio comprises three operating assets, a mine on care and maintenance, a long-life development project and a highly prospective exploration portfolio.

Aeris has a strong pipeline of organic growth projects, an aggressive exploration program and continues to investigate strategic merger and acquisition opportunities. The Company's experienced board and management team bring significant corporate and technical expertise to a lean operating model. Aeris is committed to building strong partnerships with its key community, investment and workforce stakeholders.

Competent Persons Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled by Dr Andrew Fowler. Dr Fowler confirms that he is the Competent Person for the Exploration Results and Mineral Resource summarised in this Report and he has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Targets, Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Dr Fowler is a Competent Person as defined by the JORC Code, 2012 Edition, having relevant experience to the style of mineralisation and type of deposit described in the Report and to the activity for which he is accepting responsibility. Dr Fowler is a Chartered Professional and Member of the Australian Institute of Mining and Metallurgy (ID: 301401). Dr Fowler has reviewed the Report to which this Consent Statement applies and consents to the inclusion in the Report of the matters based on his information in the form and context in which it appears. Dr Fowler is a full-time employee of Aeris Resources Limited.

APPENDIX A: Summary of drill holes used to inform the 2023 Currawong and Wilga MRE

HOLEID	SRG_E	SRG_N	SRG_RL	AZI_SRG	MGA94_E	MGA94_N	MGA94_RL	AZI_MGA	DIP	DEPTH	COMPANY
08CWDD001	43855.3	801015.6	6005.6	178.02	581179.0	5906758.2	1005.6	148.02	-70	191.1	JAB
08CWDD003	43855.3	801015.6	6005.6	181.02	581179.0	5906758.2	1005.6	151.02	-70.7	377.9	JAB
08CWDD004	43852.6	800896.1	6050.9	180	581236.4	5906653.3	1050.9	150	-69.5	285.4	JAB
08CWDD005	43812.6	800879.2	6041.8	181.02	581210.2	5906618.8	1041.8	151.02	-69.1	288.4	JAB
08CWDD005W2	43812.6	800879.2	6041.8	181.02	581210.2	5906618.8	1041.8	151.02	-68.2	275.8	JAB
08CWDD006	43962.7	800858.1	6059.5	181.02	581350.7	5906675.5	1059.5	151.02	-67.5	297.5	JAB
08CWDD007	43940.6	800883.9	6055.6	180	581318.7	5906686.8	1055.6	150	-70	517.1	JAB
08CWDD008	44021.7	800820.6	6074.3	173	581420.6	5906672.6	1074.3	143	-70	237.5	$J A B$
08CWDD009	44025.2	800909.4	6071.6	180	581379.2	5906751.2	1071.6	150	-70	288.6	JAB
08CWDD009W1	44025.2	800909.4	6071.6	181.02	581379.2	5906751.2	1071.6	151.02	-70.8	276.1	JAB
08CWDD009W2	44025.2	800909.4	6071.6	180	581379.2	5906751.2	1071.6	150	-70.6	279.6	JAB
08CWDD010	43806.5	801090.1	5966.6	177	581099.4	5906798.3	966.6	147	-69.5	539.2	JAB
08CWDD011	43948.8	801094.7	6013.8	177	581220.4	5906873.5	1013.8	147	-68.2	243.4	JAB
08CWDD012	43954.4	801006.2	6021.9	179	581269.5	5906799.7	1021.9	149	-66.7	321.5	JAB
08CWDD013	43825.4	800963.6	6025.8	179	581179.1	5906698.2	1025.8	149	-66.3	342.1	JAB
08CWDD014	43854.5	801015.2	6005.6	178	581178.5	5906757.5	1005.6	148	-64.9	327.6	JAB
08CWDD015	43961.6	800858.9	6059.5	181.02	581349.4	5906675.7	1059.5	151.02	-64.5	279.5	JAB
08CWDD016	43959.5	800858.9	6059.6	200.02	581347.6	5906674.6	1059.6	170.02	-63.9	252.5	JAB
08WGDD002	40610.2	800269.5	5687.9	178.02	578741.7	5904489.5	687.9	148.02	-63.2	165.3	JAB
08WGDD003	40561.1	800056.4	5813.4	181.02	578805.7	5904280.4	813.4	151.02	-62.2	170.4	JAB
08WGDD004	40539.7	800122.3	5767.8	178.02	578754.3	5904326.8	767.8	148.02	-61.7	174.3	JAB
08WGDD005	40457.9	800116.3	5765.7	181.02	578686.4	5904280.7	765.7	151.02	-60	165	JAB
08WGDD006	40341.7	800085.5	5766.9	172.72	578601.1	5904195.9	766.9	142.72	-60.4	71.5	JAB
08WGDD007	40340.4	800082.8	5767.0	1.01	578601.4	5904193.0	767.0	331.01	-60.2	101	JAB
08WGDD008	40480.5	800240.2	5692.3	191.02	578644.0	5904399.3	692.3	161.02	-60.6	135.4	JAB
08WGDD009	40535.3	800251.3	5694.6	181.02	578685.9	5904436.3	694.6	151.02	-60.6	131.5	JAB
08WGDD010	40524.7	800249.4	5694.4	1.01	578677.7	5904429.3	694.4	331.01	-59.2	221.6	$J A B$
08WGDD011	40567.3	800261.0	5691.0	356.02	578708.8	5904460.7	691.0	326.02	-58.4	206.2	JAB
09SMDD001	43588.0	800404.0	6098.0	163.01	581253.3	5906094.9	1098.0	133.01	-57.7	230.3	JAB
09SMDD002	43588.0	800404.0	6098.0	164.81	581253.3	5906094.9	1098.0	134.81	-56.1	279	JAB
09SMDD003	43400.0	800390.0	6114.0	165.71	581097.5	5905988.8	1114.0	135.71	-55.8	237.8	JAB
09SMDD004	43400.0	800390.0	6114.0	165.01	581097.5	5905988.8	1114.0	135.01	-55.5	300.8	JAB
09SMDD005	43500.0	800414.0	6090.0	166.31	581172.1	5906059.6	1090.0	136.31	-65	230.5	$J A B$
09SMDD006	43500.0	800414.0	6090.0	167.51	581172.1	5906059.6	1090.0	137.51	-66.1	245.9	JAB
09SMDD007	40748.0	800468.0	5748.0	161.11	578761.8	5904730.3	748.0	131.11	-65.7	401	$J A B$
09SMDD008	40748.0	800468.0	5748.0	159.11	578761.8	5904730.3	748.0	129.11	-64.5	395.6	JAB
09SMDD009	40748.0	800468.0	5748.0	158.01	578761.8	5904730.3	748.0	128.01	-63.8	265	JAB
09SMDD010	40138.0	800135.0	5739.0	185.01	578400.0	5904136.9	739.0	155.01	-63	128.1	$J A B$
10CWDD001	43954.7	800857.1	6060.1	186.51	581344.3	5906670.6	1060.1	156.51	-62	242.5	JAB
10CWDD002	43955.9	800855.9	6060.1	201.51	581345.9	5906670.2	1060.1	171.51	-61.2	258	JAB
10CWDD003	44005.7	800812.0	6074.1	164.81	581411.0	5906657.1	1074.1	134.81	-60.7	290.9	JAB
10CWDD004	44006.9	800811.3	6074.4	156.01	581412.4	5906657.1	1074.4	126.01	-59.8	240	JAB
10CWDD005	44006.5	800810.4	6074.7	169.81	581412.5	5906656.1	1074.7	139.81	-59.6	216	JAB
10CWDD006	44005.8	800810.7	6074.4	181.31	581411.8	5906656.0	1074.4	151.31	-65	227.8	JAB
10CWDD007	43849.2	800957.4	6029.9	198.11	581202.8	5906704.7	1029.9	168.11	-66.1	308.5	JAB
10CWDD008	43851.5	800882.7	6052.1	182.41	581242.2	5906641.2	1052.1	152.41	-65.7	263.6	JAB
10CWDD009	43851.1	800883.2	6052.1	192.51	581241.5	5906641.4	1052.1	162.51	-64.5	254.75	JAB
10HMS001	43825.0	800963.0	6025.0	201.01	581179.0	5906697.5	1025.0	171.01	-63.8	323.9	$J A B$
10HMS003	43825.0	800963.0	6025.0	171.51	581179.0	5906697.5	1025.0	141.51	-63.5	295	JAB
10HMS004	40523.5	800249.9	5693.0	71.01	578676.3	5904429.2	693.0	41.01	-63	173.1	JAB
10HMS005	40435.0	800303.9	5660.6	189.31	578572.7	5904431.7	660.6	159.31	-62	122.6	JAB
10HMS006	40385.2	800311.3	5653.5	254.01	578525.9	5904413.2	653.5	224.01	-59.4	134	JAB
10MET001	43900.3	800864.0	6058.1	176.51	581293.8	5906649.5	1058.1	146.51	-58.5	308.5	JAB
10MET002	43900.3	800862.7	6058.0	182.11	581294.4	5906648.3	1058.0	152.11	-58.1	269.9	JAB
10MET004	43957.1	800856.2	6061.2	165.11	581346.9	5906671.1	1061.2	135.11	-65	285	JAB
10MET005	43955.8	800856.1	6061.3	175.01	581345.8	5906670.3	1061.3	145.01	-66.1	239.9	JAB
10MET006	43928.4	800977.5	6022.2	178.51	581261.3	5906761.8	1022.2	148.51	-65.7	300	JAB
10MET007	43877.4	800986.0	6019.2	178.21	581212.9	5906743.6	1019.2	148.21	-64.5	329.2	JAB
10MET008	43877.3	800985.1	6019.7	178.41	581213.3	5906742.8	1019.7	148.41	-62.1	300	JAB
10MET009	43847.6	800988.1	6016.7	181.81	581186.1	5906730.5	1016.7	151.81	-61	285	JAB
10MET010	44005.7	800957.1	6055.6	180.81	581338.4	5906782.8	1055.6	150.81	-60.8	311.9	JAB
10MET011	44027.6	800973.6	6059.9	178.01	581349.1	5906808.0	1059.9	148.01	-60.9	310.9	JAB
10SMDD004	43904.0	800479.0	6114.0	197.51	581489.5	5906317.8	1114.0	167.51	-60.7	251	JAB
10SMDD005	40811.0	800556.0	5780.0	164.61	578772.3	5904838.0	780.0	134.61	-60.4	479.7	JAB
10SMDD010	43896.6	801407.3	5936.5	182.01	581018.9	5907118.1	936.5	152.01	-60.1	524.6	JAB
10SMDD011	43897.3	801406.8	5936.6	171.81	581019.8	5907118.0	936.6	141.81	-60	552.7	JAB
11CWDD001	43851.6	800882.7	6052.4	194.11	581242.2	5906641.2	1052.4	164.11	-60.8	263.8	JAB
11CWDD002	44045.5	800950.2	6075.4	255.41	581376.4	5906796.6	1075.4	225.41	-59.4	422.7	JAB
11CWDD003	43742.6	800906.8	6041.0	170.81	581135.8	5906607.6	1041.0	140.81	-57.2	278.5	JAB
11CWDD004	43956.8	800857.0	6061.1	169.01	581346.2	5906671.6	1061.1	139.01	-57	251.9	JAB

HOLEID	SRG_E	SRG_N	SRG_RL	AZI_SRG	MGA94_E	MGA94_N	MGA94_RL	AZI_MGA	DIP	DEPTH	COMPANY
11CWDD006	43742.3	800906.6	6041.1	176.81	581135.7	5906607.3	1041.1	146.81	-56.7	290.3	JAB
11CWDD008	43824.3	801093.5	5966.6	164.61	581113.2	5906810.2	966.6	134.61	-56.4	330.9	JAB
11CWDD009	43899.6	800860.6	6058.5	192.81	581294.9	5906646.1	1058.5	162.81	-56.6	260.8	JAB
11CWDD010	43991.0	800485.5	6126.0	1.21	581561.5	5906367.0	1126.0	331.21	-55.7	551.5	JAB
11CWDD011	43900.6	800859.6	6058.5	180.01	581296.2	5906645.8	1058.5	150.01	-55.6	254.3	$J A B$
11CWDD012	43956.4	800861.9	6060.7	211.81	581343.4	5906675.7	1060.7	181.81	-55.7	285	$J A B$
11CWDD013	43945.5	801093.8	6014.2	197.01	581218.0	5906871.0	1014.2	167.01	-80	254.9	$J A B$
11CWDD014	43974.4	801037.8	6025.2	181.21	581271.0	5906837.0	1025.2	151.21	-80.6	326.7	JAB
11CWDD015	43776.0	801098.1	5962.3	189.01	581069.0	5906790.0	962.3	159.01	-80.3	171	$J A B$
11CWDD016	43776.8	801097.6	5962.5	178.11	581070.0	5906790.0	962.5	148.11	-79.8	320.9	JAB
11CWDD018	44048.2	800945.0	6076.4	183.61	581381.3	5906793.5	1076.4	153.61	-79.4	303	JAB
11CWDD019	44048.2	800945.5	6076.2	185.81	581381.1	5906793.9	1076.2	155.81	-79.1	320	JAB
11CWDD020	43739.5	800905.9	6040.1	196.61	581133.5	5906605.3	1040.1	166.61	-78.5	272.6	$J A B$
11CWDD021	43738.9	800906.5	6040.0	209.11	581132.8	5906605.5	1040.0	179.11	-78.2	281.4	JAB
11CWDD022	43740.0	800906.8	6040.0	191.01	581133.5	5906606.4	1040.0	161.01	-78.3	326.8	JAB
11CWDD023	43739.2	800906.9	6039.8	208.91	581132.7	5906606.0	1039.8	178.91	-77.9	335.8	JAB
11CWDD024	43739.0	800907.5	6040.0	218.51	581132.4	5906606.4	1040.0	188.51	-76.2	296.8	JAB
11CWDD025	43742.6	800906.7	6040.0	167.81	581135.8	5906607.5	1040.0	137.81	-75.6	290.7	JAB
11CWDD026	43738.6	800906.4	6040.0	212.91	581132.5	5906605.3	1040.0	182.91	-75.4	452.6	JAB
11CWDD027	43740.1	800906.3	6040.2	189.01	581133.9	5906605.9	1040.2	159.01	-75.6	299.7	JAB
11CWDD028	43773.4	801096.1	5963.0	187.91	581067.8	5906787.0	963.0	157.91	-75.6	335.5	JAB
11CWDD029	43773.9	801097.0	5962.5	188.11	581067.8	5906788.0	962.5	158.11	-75.8	260.5	JAB
11CWDD030	43772.2	801097.7	5962.8	215.01	581066.0	5906787.8	962.8	185.01	-75.6	194.7	JAB
11CWDD031	43772.5	801096.8	5963.3	207.41	581066.7	5906787.2	963.3	177.41	-68	182.3	$J A B$
11CWDD034	43771.9	801097.6	5963.4	221.01	581065.7	5906787.5	963.4	191.01	-68	190.3	JAB
11CWDD035	43772.0	801097.3	5963.9	214.61	581066.0	5906787.3	963.9	184.61	-66.5	227	JAB
11CWDD036	43771.2	801097.7	5964.0	201.91	581065.1	5906787.2	964.0	171.91	-66.4	185.7	JAB
11CWDD037	43770.1	801098.4	5963.7	226.31	581063.8	5906787.3	963.7	196.31	-66.7	242.8	$J A B$
11CWDD038	43770.1	801098.8	5962.9	232.11	581063.6	5906787.7	962.9	202.11	-66.5	245.4	JAB
11CWDD039	43769.9	801098.7	5963.1	232.61	581063.4	5906787.4	963.1	202.61	-66.6	227	JAB
11CWDD040	43739.3	800909.2	6039.4	183.51	581131.7	5906608.1	1039.4	153.51	-66.6	308.6	$J A B$
11CWDD041	43739.4	800909.0	6039.5	181.51	581131.9	5906607.9	1039.5	151.51	-71	312	JAB
11CWDD042	43739.0	800908.7	6039.8	189.81	581131.7	5906607.5	1039.8	159.81	-71.4	317.7	JAB
11CWDD043	43738.3	800909.2	6039.4	204.41	581130.9	5906607.6	1039.4	174.41	-71	310.1	JAB
11CWDD044	43739.6	800909.5	6038.8	182.61	581131.8	5906608.5	1038.8	152.61	-70.4	311.8	JAB
11CWDD045	43739.0	800909.8	6038.8	196.21	581131.1	5906608.4	1038.8	166.21	-70.1	332.7	JAB
11GT005	43860.5	801096.7	5971.2	132.01	581142.9	5906831.0	971.2	102.01	-69.9	376.8	JAB
11SMDD001	43803.7	801396.1	5913.9	176.51	580944.1	5907061.9	913.9	146.51	-69.7	552	JAB
11SMDD002	43803.0	801395.1	5914.4	185.51	580943.9	5907060.7	914.4	155.51	-69.4	567.9	$J A B$
11SMDD005	44143.2	801270.2	5994.6	159.81	581301.0	5907122.6	994.6	129.81	-69.3	260.8	JAB
11SMDD006	44141.1	801269.8	5994.6	196.31	581299.4	5907121.3	994.6	166.31	-69.1	362.7	JAB
11SMDD008	44140.5	801270.5	5994.3	210.01	581298.5	5907121.5	994.3	180.01	-71	464.8	JAB
11SMDD012	44382.7	801126.8	6082.5	222.01	581580.1	5907118.2	1082.5	192.01	-71.4	254.4	JAB
11SMDD013	40625.4	799770.6	5834.5	195.01	579004.3	5904065.0	834.5	165.01	-71	329.6	JAB
11SMDD014	40626.1	799772.4	5834.5	184.81	579004.0	5904067.0	834.5	154.81	-70.4	353.6	JAB
11SMDD015	40622.8	799773.2	5834.4	246.81	579000.7	5904066.0	834.4	216.81	-70.1	360.5	$J A B$
11SMDD016	40624.6	799776.8	5834.4	1.11	579000.5	5904070.0	834.4	331.11	-69.9	350.8	$J A B$
11SMDD017	40626.7	799770.9	5834.5	166.21	579005.3	5904066.0	834.5	136.21	-69.7	374.4	JAB
11SMDD018	40444.3	799240.0	5921.6	1.81	579112.8	5903515.0	921.6	331.81	-69.2	547	JAB
11SMDD020	43616.0	801147.0	5981.0	163.71	580906.0	5906752.4	981.0	133.71	-68.8	489.9	JAB
11WGDD001	40603.8	800276.4	5686.2	181.31	578732.7	5904492.3	686.2	151.31	-68.6	175	$J A B$
11WGDD002	40570.8	800255.8	5691.4	175.31	578714.4	5904457.9	691.4	145.31	-68.3	170	JAB
11WGDD003	40504.0	800239.6	5691.8	183.81	578664.7	5904410.5	691.8	153.81	-71	158.6	JAB
11WGDD005	40604.0	800271.0	5688.0	181.81	578735.6	5904487.7	688.0	151.81	-71.4	175.3	JAB
11WGDD007	40337.8	800082.3	5768.4	302.01	578599.4	5904191.2	768.4	272.01	-71	105	JAB
11WGDD008	40340.0	800092.0	5767.0	314.71	578596.4	5904200.7	767.0	284.71	-70.4	125.1	JAB
11WGDD009	40606.0	800275.3	5686.3	212.91	578735.2	5904492.4	686.3	182.91	-70.1	175.5	JAB
11WGDD010	40605.6	800276.4	5686.2	235.61	578734.3	5904493.2	686.2	205.61	-69.9	200.7	$J A B$
11WGDD011	40604.9	800275.9	5686.3	236.51	578733.9	5904492.4	686.3	206.51	-67.9	179.8	JAB
12CWDD002	44008.7	800810.3	6074.7	206.21	581414.4	5906657.1	1074.7	176.21	-67.1	212.8	IGO
12SMDD001	44048.6	801150.3	6041.0	123.21	581279.0	5906971.6	1041.0	93.21	-67.3	329	IGO
12SMDD002	44046.9	801149.7	6040.9	152.71	581277.9	5906970.2	1040.9	122.71	-67.3	275.7	IGO
12SMDD003	44047.6	801150.9	6040.9	127.81	581277.8	5906971.5	1040.9	97.81	-66.9	506.2	IGO
12SMDD004	43431.7	801465.0	5909.1	138.71	580587.4	5906935.6	909.1	108.71	-66.6	752.6	IGO
12SMDD005	44143.8	801269.8	5994.3	170.71	581301.7	5907122.7	994.3	140.71	-66.5	278.8	IGO
12SMDD006	44387.9	801121.1	6083.1	185.31	581587.5	5907115.9	1083.1	155.31	-66	261	IGO
12SMDD007	44137.5	801269.4	5996.1	158.41	581296.4	5907119.1	996.1	128.41	-65.8	338.67	IGO
12SMDD008	40500.8	799934.0	5850.8	181.91	578814.7	5904144.3	850.8	151.91	-60	344.8	IGO
12SMDD009	40627.8	799770.1	5834.5	128.61	579006.6	5904065.8	834.5	98.61	-60.9	260	IGO
12SMDD012	44047.3	801152.8	6040.3	124.61	581276.7	5906973.0	1040.3	94.61	-60.9	272.9	IGO
12SMDD013	44046.7	801151.8	6040.7	140.51	581276.6	5906971.9	1040.7	110.51	-60.7	308.8	IGO
12WGDD001	40277.5	800147.1	5714.4	280.81	578514.8	5904217.2	714.4	250.81	-60.7	101.6	IGO
12WGDD002	40278.1	800148.6	5714.3	322.21	578514.6	5904218.8	714.3	292.21	-60.3	119	IGO

HOLEID	SRG_E	SRG_N	SRG_RL	AZI_SRG	MGA94_E	MGA94_N	MGA94_RL	AZI_MGA	DIP	DEPTH	COMPANY
12WGDD003	40278.5	800149.3	5714.3	333.81	578514.6	5904219.6	714.3	303.81	-60.1	146.8	IGO
12WGDD004	40279.8	800149.5	5714.2	0.61	578515.6	5904220.4	714.2	330.61	-60.4	158.5	IGO
12WGDD006	40277.0	800144.0	5715.0	24.01	578515.9	5904214.2	715.0	354.01	-60	146.6	IGO
12WGDD007	40415.3	800252.6	5619.5	272.81	578581.4	5904377.4	619.5	242.81	-59.8	129	IGO
12WGDD008	40415.3	800252.6	5619.7	274.81	578581.4	5904377.4	619.7	244.81	-59.2	204.1	IGO
12WGDD009	40425.4	800244.9	5620.0	258.71	578593.9	5904375.8	620.0	228.71	-57.2	167.7	IGO
12WGDD010	40425.3	800245.2	5620.0	266.21	578593.7	5904376.0	620.0	236.21	-56.8	169.6	IGO
12WGDD011	40426.7	800252.0	5617.9	47.01	578591.5	5904382.6	617.9	17.01	-56.3	117	IGO
12WGDD012	40425.6	800251.9	5618.1	357.01	578590.6	5904381.9	618.1	327.01	-55.8	114.1	IGO
12WGDD013	40426.8	800252.0	5618.0	101.21	578591.6	5904382.6	618.0	71.21	-55.3	90.2	IGO
12WGDD014	40425.0	800245.0	5619.5	242.41	578593.6	5904375.7	619.5	212.41	-54.5	42.1	IGO
12WGDD015	40423.4	800247.8	5619.3	163.51	578590.8	5904377.3	619.3	133.51	-53.9	50.1	IGO
12WGDD016	40441.3	800227.7	5622.8	168.91	578616.3	5904368.8	622.8	138.91	-60	48.1	IGO
12WGDD017	40437.4	800229.3	5622.6	249.71	578612.1	5904368.3	622.6	219.71	-61.5	71.8	IGO
12WGDD018	40487.5	800233.8	5629.0	21.71	578653.3	5904397.3	629.0	351.71	-61.2	138.5	IGO
12WGDD019	40486.3	800233.5	5628.8	322.01	578652.4	5904396.4	628.8	292.01	-61	101.9	IGO
12WGDD020	40487.8	800233.5	5629.1	43.01	578653.7	5904397.1	629.1	13.01	-60.4	98.2	IGO
12WGDD021	40504.4	800228.4	5631.6	43.11	578670.6	5904401.0	631.6	13.11	-60.3	170.8	IGO
12WGDD022	40504.7	800228.0	5631.5	61.61	578671.1	5904400.8	631.5	31.61	-59.8	147	IGO
12WGDD024	40502.5	800229.4	5631.0	79.61	578668.5	5904400.9	631.0	49.61	-59.7	202.9	IGO
12WGDD025	40499.7	800223.5	5632.7	226.91	578669.0	5904394.4	632.7	196.91	-66	114.5	IGO
12WGDD026	40499.2	800223.9	5632.7	244.21	578668.4	5904394.5	632.7	214.21	-66.5	93.9	IGO
12WGDD027	40482.5	800187.0	5639.0	212.51	578672.3	5904354.2	639.0	182.51	-66	96	IGO
12WGDD028	40483.2	800186.9	5639.6	189.71	578673.0	5904354.5	639.6	159.71	-65.9	74	IGO
12WGDD029	40483.6	800186.8	5639.1	181.01	578673.4	5904354.6	639.1	151.01	-65.4	84	IGO
12WGDD030	40483.7	800186.8	5639.7	191.01	578673.5	5904354.6	639.7	161.01	-64.6	79.7	IGO
12WGDD031	40482.6	800187.1	5640.0	161.61	578672.4	5904354.4	640.0	131.61	-64	78.8	IGO
12WGDD032	40482.8	800186.8	5639.4	155.71	578672.7	5904354.2	639.4	125.71	-63.4	99	IGO
13SMDD008	44047.1	801150.9	6040.6	135.81	581277.4	5906971.3	1040.6	105.81	-63.2	482.2	IGO
21CWDD001	44004.0	800955.3	6053.5	180.18	581337.9	5906780.4	1053.5	150.18	-62	285.5	ROM
21CWDD002	43880.8	800948.5	6032.9	177.73	581234.6	5906712.8	1032.9	147.73	-53	295	ROM
21CWDD003	43878.5	800950.4	6032.7	172.63	581231.7	5906713.3	1032.7	142.63	-53.4	313.45	ROM
21CWDD004	43879.2	800951.0	6032.5	196.45	581231.9	5906714.2	1032.5	166.45	-52.9	349.1	ROM
21CWDD005	43885.9	800958.5	6039.0	204.74	581234.0	5906724.0	1039.0	174.74	-52.6	313.11	ROM
21WGDD001	40610.1	800261.0	5684.9	170.93	578745.9	5904482.1	684.9	140.93	-52.2	147.49	ROM
21WGDD002	40608.3	800258.4	5684.9	190.12	578745.6	5904478.9	684.9	160.12	-50.4	161.9	ROM
21WGDD003	40610.4	800258.5	5685.1	160.52	578747.3	5904480.1	685.1	130.52	-51.7	155.16	ROM
21WGDD004	40393.4	800091.6	5767.7	96.05	578642.9	5904227.1	767.7	66.05	-50.5	116.31	ROM
21WGDD005	40393.6	800092.8	5767.7	63.43	578642.5	5904228.2	767.7	33.43	-50.8	124.3	ROM
21WGDD006	40392.8	800093.1	5767.6	55.88	578641.6	5904228.0	767.6	25.88	-50.4	111.5	ROM
21WGDD007	40340.6	800085.1	5767.7	73.33	578600.4	5904195.1	767.7	43.33	-49	75.54	ROM
21WGDD008	40340.9	800084.1	5767.7	47.17	578601.1	5904194.3	767.7	17.17	-70	110.19	ROM
BEDD0015	40606.0	800247.9	5693.1	166.985	578748.9	5904468.7	693.1	136.985	-70.4	160.4	Austminex
BEDD0016	40648.2	800263.9	5702.5	175.985	578777.4	5904503.6	702.5	145.985	-70.1	199	Austminex
BEDD0025	43809.4	800899.3	6045.7	178.985	581197.3	5906634.6	1045.7	148.985	-69.6	258.3	Austminex
BEDD0029	43925.7	800979.5	6019.9	147.985	581258.0	5906762.1	1019.9	117.985	-69.6	211.2	Austminex
BEDD0030	43971.4	800807.0	6070.0	180.985	581383.8	5906635.6	1070.0	150.985	-69.1	210.1	Austminex
BEDD0031	43971.4	800806.3	6069.9	181.985	581384.2	5906635.0	1069.9	151.985	-69	225.3	Austminex
BEDD0032	43921.9	800816.5	6055.4	179.985	581336.2	5906619.0	1055.4	149.985	-69	215	Austminex
BEDD0033	43921.9	800816.2	6055.5	180.985	581336.3	5906618.9	1055.5	150.985	-69.5	225.3	Austminex
BEDD0034	44023.6	800908.5	6071.5	181.485	581378.3	5906749.6	1071.5	151.485	-69.6	275.5	Austminex
BEDD0035	43995.5	800890.6	6059.2	165.985	581362.9	5906720.1	1059.2	135.985	-69.3	255	Austminex
BEDD0036	43871.7	800837.6	6049.6	177.985	581282.2	5906612.2	1049.6	147.985	-60	220.2	Austminex
BEDD0037	43824.5	800963.0	6024.5	183.485	581178.6	5906697.2	1024.5	153.485	-60.1	288.4	Austminex
BEND004	40487.8	800029.6	5816.7	177.36	578755.6	5904220.6	816.7	147.36	-59.9	91.42	WMC
BEND013	40584.5	800038.8	5828.8	177.41	578834.8	5904276.8	828.8	147.41	-58.3	93.56	WMC
BEND017	40430.5	800177.9	5724.9	177.46	578631.9	5904320.3	724.9	147.46	-57.9	128.95	WMC
BEND018	40424.3	800225.6	5695.7	187.46	578602.7	5904358.5	695.7	157.46	-57.4	168.61	WMC
BEND019	40424.3	800225.6	5695.7	30	578602.7	5904358.5	695.7	0	-56.3	154.65	WMC
BEND020	40533.6	800231.3	5702.4	177.5	578694.4	5904418.1	702.4	147.5	-55.5	149.15	WMC
BEND021	40532.7	800281.4	5682.8	190.51	578668.6	5904461.0	682.8	160.51	-55.7	154.75	WMC
BEND022	43855.3	800810.3	6040.9	185.52	581281.6	5906580.4	1040.9	155.52	-55.6	171.75	WMC
BEND023	40534.1	800149.6	5750.4	187.52	578735.7	5904347.6	750.4	157.52	-55.1	132.87	WMC
BEND024	43801.5	801084.5	5966.9	177.53	581097.9	5906791.0	966.9	147.53	-58	166.1	WMC
BEND025	40608.8	800263.7	5690.4	192.52	578743.4	5904483.8	690.4	162.52	-58.4	176.75	WMC
BEND026	40341.4	800167.8	5714.6	187.52	578559.7	5904267.0	714.6	157.52	-57.3	92.45	WMC
BEND027	43801.6	801042.8	5987.0	177.53	581118.9	5906754.9	987.0	147.53	-57.2	185.85	WMC
BEND028	40617.9	800163.5	5746.5	177.53	578801.4	5904401.6	746.5	147.53	-57.2	128.3	WMC
BEND029	40332.9	800247.7	5665.4	182.53	578512.4	5904332.0	665.4	152.53	-57.1	97.9	WMC
BEND030	40612.8	800324.8	5670.6	177.53	578716.3	5904538.7	670.6	147.53	-56.5	183.45	WMC
BEND031	43800.2	801164.2	5948.5	177.57	581057.0	5906859.4	948.5	147.57	-56.3	403.5	WMC
BEND032	40229.0	800250.7	5670.5	177.54	578420.9	5904282.6	670.5	147.54	-56.2	90.2	WMC
BEND033	40730.8	800271.4	5716.5	177.54	578845.2	5904551.5	716.5	147.54	-56	209.05	WMC

HOLEID	SRG_E	SRG_N	SRG_RL	AZI_SRG	MGA94_E	MGA94_N	MGA94_RL	AZI_MGA	DIP	DEPTH	COMPANY
BEND034	43899.8	801027.9	6001.8	187.54	581211.4	5906791.1	1001.8	157.54	-90	220.45	WMC
BEND035	40228.5	800250.6	5670.5	30	578420.6	5904282.3	670.5	0	-89.4	94.05	WMC
BEND036	40721.9	800309.5	5695.1	177.54	578818.4	5904580.0	695.1	147.54	-89.3	200.95	WMC
BEND037	40230.9	800209.7	5692.9	177.55	578443.1	5904248.1	692.9	147.55	-60	81.45	WMC
BEND038	40133.5	800235.2	5687.0	183.55	578346.0	5904221.5	687.0	153.55	-61	92.25	WMC
BEND039	40721.9	800309.5	5695.1	357.55	578818.4	5904580.0	695.1	327.55	-60.9	291.3	WMC
BEND040	40176.6	800289.2	5653.2	189.55	578356.4	5904289.8	653.2	159.55	-60.4	85.15	WMC
BEND041	40438.3	800096.8	5773.3	182.56	578679.1	5904254.0	773.3	152.56	-60.2	96.45	WMC
BEND042	40431.0	800314.0	5657.5	30	578564.2	5904438.5	657.5	0	-59.9	146.6	WMC
BEND043	43900.0	801028.4	6001.8	177.56	581211.3	5906791.6	1001.8	147.56	-90	213.5	WMC
BEND044	40541.1	800085.7	5794.7	162.57	578773.7	5904295.8	794.7	132.57	-89.3	99.55	WMC
BEND045	43959.6	800857.5	6060.1	192.57	581348.3	5906673.4	1060.1	162.57	-89.5	301.3	WMC
BEND046	40326.7	800280.1	5647.8	357.57	578490.8	5904356.9	647.8	327.57	-89.2	134.15	WMC
BEND048	44011.0	800935.9	6064.1	187.58	581353.7	5906767.0	1064.1	157.58	-88.5	314.05	WMC
BEND051	44012.3	801017.2	6044.0	177.59	581314.1	5906838.1	1044.0	147.59	-88.3	408.3	WMC
BEND055	43806.5	800885.3	6042.9	177.6	581201.9	5906621.0	1042.9	147.6	-85	268.95	WMC
BEND055W1	43806.5	800885.3	6042.9	177.6	581201.9	5906621.0	1042.9	147.6	-85.8	241.9	WMC
BEND056	40175.2	800519.6	5759.3	30	578240.0	5904488.6	759.3	0	-85.3	354.55	WMC
BEND059	43901.4	800949.0	6036.0	177.6	581252.2	5906723.6	1036.0	147.6	-84.9	291.65	WMC
BEND059W2	43901.4	800949.0	6036.0	177.6	581252.2	5906723.6	1036.0	147.6	-84.8	262.85	WMC
BEND060	43901.4	801169.0	6002.1	187.61	581142.2	5906914.1	1002.1	157.61	-84.5	488.25	WMC
BEND060W1	43901.4	801169.0	6002.1	187.61	581142.2	5906914.1	1002.1	157.61	-84.3	406.05	WMC
BEND060W2	43901.4	801169.0	6002.1	187.61	581142.2	5906914.1	1002.1	157.61	-84.3	280.2	WMC
BEND061	44099.2	801050.9	6068.9	173.6	581372.5	5906910.7	1068.9	143.6	-75	363.1	WMC
BEND062	43803.9	800960.9	6025.9	177.61	581161.8	5906685.2	1025.9	147.61	-75.7	364.35	WMC
BEND062W1	43803.9	800960.9	6025.9	177.61	581161.8	5906685.2	1025.9	147.61	-75	259.05	WMC
BEND063	44013.4	801096.3	6036.2	177.62	581275.6	5906907.2	1036.2	147.62	-74.9	390	WMC
BEND064	43701.0	800950.4	6026.8	184.61	581077.9	5906624.6	1026.8	154.61	-74.8	344.4	WMC
BEND065	44009.8	801255.0	6027.8	177.62	581193.1	5907042.8	1027.8	147.62	-74.6	484.6	WMC
BEND066	43701.4	801106.7	5964.3	190.62	581000.1	5906760.1	964.3	160.62	-74.5	402.4	WMC
BEND067	43901.4	801168.6	6002.1	177.62	581142.4	5906913.8	1002.1	147.62	-85	476.25	WMC
BEND068	40483.7	800245.7	5689.3	181.63	578644.1	5904405.6	689.3	151.63	-85.1	122.6	WMC
BEND070	43600.9	801130.4	5984.9	177.64	580901.3	5906730.4	984.9	147.64	-84.9	378.2	WMC
BEND071	43398.9	800917.2	5968.9	187.63	580833.0	5906444.8	968.9	157.63	-85.9	275.15	WMC
BEND075	43599.6	801223.7	5964.7	177.64	580853.5	5906810.6	964.7	147.64	-75	294.5	WMC
BEND077	43688.3	801299.9	5911.8	167.65	580892.2	5906921.0	911.8	137.65	-76.3	507	WMC
BEND078	40375.6	799535.3	5819.8	357.65	578905.7	5903736.3	819.8	327.65	-76.9	368.2	WMC
BEND079	44298.3	801156.9	6052.3	167.65	581492.0	5907102.1	1052.3	137.65	-77.6	522	WMC
BEND080	44295.6	801233.5	6027.4	177.66	581451.3	5907167.0	1027.4	147.66	-70	272.2	WMC
BEND082	44401.1	801150.1	6065.9	177.67	581584.4	5907147.6	1065.9	147.67	-70.4	273.8	WMC
BEND084	44403.1	801253.9	6048.9	177.68	581534.3	5907238.5	1048.9	147.68	-71.2	325	WMC
BEND085	40467.6	799568.1	5815.3	357.68	578968.9	5903810.8	815.3	327.68	-71.1	263.4	WMC
BEND086	44402.5	801310.1	6028.9	183.69	581505.6	5907286.9	1028.9	153.69	-70.6	406.7	WMC
BEND089	40545.8	799855.6	5827.8	177.69	578892.9	5904098.9	827.8	147.69	-60	226.3	WMC
BEND090	40538.8	799947.7	5864.0	357.7	578840.8	5904175.1	864.0	327.7	-59.6	403.05	WMC
BEND091	44203.5	801171.6	6002.9	177.7	581402.6	5907067.4	1002.9	147.7	-59.3	195.55	WMC
BEND092	40746.1	799848.8	5920.8	30	579069.8	5904193.2	920.8	0	-59.3	417.85	WMC
BEND098	43914.8	800588.5	6101.6	176.74	581444.0	5906418.1	1101.6	146.74	-75	548.1	WMC
BEND100	40720.6	800420.3	5720.4	30	578761.9	5904675.3	720.4	0	-75.9	417.15	WMC
BEND101	40566.4	800555.9	5662.4	30	578560.6	5904715.7	662.4	0	-75.9	343.9	WMC
BEND103	40581.9	800130.2	5766.3	177.635	578786.8	5904354.7	766.3	147.635	-76.1	114	MACQ
BEND104	40582.0	800129.3	5766.4	30	578787.3	5904354.0	766.4	0	-76.9	168.5	MACQ
BEND105	40539.7	800122.4	5766.5	177.635	578754.2	5904326.9	766.5	147.635	-76.6	117	MACQ
BEND106	40488.1	800128.8	5764.3	177.635	578706.3	5904306.6	764.3	147.635	-77.2	155.7	MACQ
BEND107	40488.2	800129.2	5764.3	177.635	578706.2	5904307.0	764.3	147.635	-77.2	118.5	MACQ
BEND109	40286.0	800133.0	5723.5	177.635	578529.2	5904209.1	723.5	147.635	-80	49.1	MACQ
BEND110	40385.2	800195.5	5700.7	177.635	578583.8	5904312.9	700.7	147.635	-80.5	83.1	MACQ
BEND111	40283.7	800192.7	5695.4	177.635	578497.3	5904259.7	695.4	147.635	-80.4	72.8	MACQ
BEND112	40574.4	800259.5	5696.5	177.635	578715.7	5904462.9	696.5	147.635	-80.9	141.5	MACQ
BEND113	40279.9	800284.9	5647.9	177.636	578447.9	5904337.7	647.9	147.636	-81.6	110.2	MACQ
BEND114	40484.6	800278.7	5672.9	30	578628.3	5904434.7	672.9	0	-81.7	158.4	MACQ
BEND115	40280.7	800286.6	5648.1	357.636	578447.8	5904339.6	648.1	327.636	-44.7	144.5	MACQ
BEND116	40617.2	800242.2	5697.8	177.636	578761.4	5904469.4	697.8	147.636	-44.7	149.8	MACQ
BEND117	40584.3	800064.0	5810.5	177.636	578822.0	5904298.6	810.5	147.636	-44.5	81.7	MACQ
BEND118	40391.8	800095.5	5765.0	30	578639.6	5904229.6	765.0	0	-43.6	80.5	MACQ
BEND119	40381.0	800304.3	5649.9	30	578525.8	5904405.0	649.9	0	-42.3	127.1	MACQ
BEND120	40389.4	800039.4	5796.6	30	578665.5	5904179.9	796.6	0	-41.5	60.4	MACQ
BEND121	40381.0	800303.0	5650.0	177.692	578526.5	5904403.9	650.0	147.692	-40.4	93.89	MACQ
BEND122	40535.9	800261.4	5691.0	30	578681.4	5904445.4	691.0	0	-39.1	164.1	MACQ
BEND124	40539.6	800123.6	5766.4	30	578753.5	5904327.9	766.4	0	-38.6	160.9	MACQ
BEND125	40683.3	800218.7	5738.8	30	578830.4	5904482.0	738.8	0	-80.1	184.9	MACQ
BEND126	43852.4	800888.2	6051.3	177.648	581240.2	5906646.4	1051.3	147.648	-80.1	316.9	MACQ
BEND127	43851.7	800957.9	6029.3	174.648	581204.8	5906706.5	1029.3	144.648	-79.9	319.3	MACQ

HOLEID	SRG_E	SRG_N	SRG_RL	AZI_SRG	MGA94_E	MGA94_N	MGA94_RL	AZI_MGA	DIP	DEPTH	COMPANY
BEND128	43802.1	801050.6	5981.3	177.658	581115.4	5906761.9	981.3	147.658	-79.3	351.82	MACQ
BEND129	43900.0	801059.0	5991.6	178.031	581195.9	5906818.2	991.6	148.031	-78.4	339.4	MACQ
BEND130	43947.4	801121.9	6010.1	177.658	581205.6	5906896.4	1010.1	147.658	-77.4	391.6	MACQ
BEND131	43758.3	800968.8	6013.1	177.658	581118.4	5906669.2	1013.1	147.658	-77.4	353.5	MACQ
BEND132	43949.7	801005.0	6021.8	182.658	581266.0	5906796.2	1021.8	152.658	-76.7	314.6	MACQ
BEND133	44002.0	800815.5	6071.0	176.662	581406.1	5906658.3	1071.0	146.662	-75.9	256.7	MACQ
BEND134	43900.8	800984.6	6017.7	177.662	581233.9	5906754.1	1017.7	147.662	-75	614.4	MACQ
BEND135	43902.2	800795.0	6053.6	179.663	581329.9	5906590.7	1053.6	149.663	-73.3	217.6	MACQ
BEND136	40337.6	800085.5	5766.2	30	578597.6	5904193.9	766.2	0	-48.2	75.39	MACQ
BEND137	40484.9	800275.8	5673.1	177.663	578630.0	5904432.3	673.1	147.663	-48.2	148	MACQ
BEND138	40334.5	800209.8	5688.1	177.663	578532.8	5904300.0	688.1	147.663	-47.9	89	MACQ
BEND139	40386.1	800167.6	5715.6	182.663	578598.6	5904289.2	715.6	152.663	-47	88.5	MACQ
BEND142	43911.8	800699.9	6063.1	177.69	581385.7	5906513.0	1063.1	147.69	-46.1	193.5	MACQ
BEND143	40326.7	800279.5	5648.7	177.69	578491.2	5904356.4	648.7	147.69	-45	103.9	MACQ
BEND144	43959.6	800709.8	6083.1	177.69	581422.2	5906545.5	1083.1	147.69	-44.5	208.5	MACQ
BEND145	43863.3	800716.7	6046.1	177.69	581335.3	5906503.4	1046.1	147.69	-44.2	100.6	MACQ
BEND146	43946.0	800883.9	6053.9	177.692	581323.3	5906689.5	1053.9	147.692	-44.3	313.5	MACQ
BEND147	43994.3	800890.1	6059.0	177.692	581362.1	5906719.1	1059.0	147.692	-44.7	344.5	MACQ
BEND148	44051.3	800951.5	6074.3	173.692	581380.8	5906800.7	1074.3	143.692	-74.4	310.5	MACQ
BEND149	43851.1	801015.5	6003.0	180.695	581175.4	5906756.0	1003.0	150.695	-74.4	352	MACQ
BEND150	43851.1	801016.1	6003.0	177.696	581175.1	5906756.6	1003.0	147.696	-74.2	187.8	MACQ
BEND152	40581.2	800128.7	5766.2	177.696	578786.9	5904353.1	766.2	147.696	-73.5	202	MACQ
BEND153	43948.8	801061.1	6014.3	177.696	581237.2	5906844.4	1014.3	147.696	-73.5	346.5	MACQ
BEND156	43898.7	801110.9	5989.8	177.7	581168.9	5906862.5	989.8	147.7	-73.5	403.5	MACQ
BEND159	40734.1	800166.8	5778.2	267.701	578900.3	5904462.5	778.2	237.701	-72.5	250	MACQ
BEND163	43754.8	801067.0	5975.9	177.703	581066.2	5906752.4	975.9	147.703	-71.8	144.5	MACQ
BEND174	43845.4	801095.3	5968.9	176.733	581130.6	5906822.3	968.9	146.733	-71.2	400.2	MACQ
BEND175	43800.9	801097.9	5962.4	177.735	581090.7	5906802.3	962.4	147.735	-70.7	296.7	MACQ
BEND176	43800.9	801098.2	5962.4	177.735	581090.5	5906802.5	962.4	147.735	-70.4	280.05	MACQ
BEND177	43849.2	801146.6	5970.1	172.735	581108.2	5906868.6	970.1	142.735	-69.4	465.5	MACQ
BEND178	44015.8	800644.1	6114.0	177.735	581503.7	5906516.8	1114.0	147.735	-68.6	294.8	MACQ
BEND179	43798.4	801403.0	5912.0	172.738	580936.0	5907065.3	912.0	142.738	-44.3	454.5	MACQ
BEND180	43812.9	800694.8	6047.0	177.74	581302.7	5906459.2	1047.0	147.74	-44.3	145.5	MACQ
BEND181	43812.9	800695.8	6047.0	177.74	581302.2	5906460.1	1047.0	147.74	-43.9	185	MACQ
BEND182	43277.1	800712.3	6050.9	190.975	580829.9	5906206.4	1050.9	160.975	-44.5	471.5	MACQ
BEND200	40522.3	800156.7	5670.5	193.01	578721.9	5904347.9	670.5	163.01	-44.1	93.6	DENE
BEND201	40522.2	800156.8	5670.5	198.01	578721.9	5904347.9	670.5	168.01	-43.4	74.2	DENE
BEND202	40522.2	800156.9	5670.5	210.01	578721.8	5904348.0	670.5	180.01	-41.9	74	DENE
BEND203	40520.7	800160.3	5670.5	253.51	578718.8	5904350.3	670.5	223.51	-40	76.4	DENE
BEND204	40521.0	800161.6	5670.5	318.01	578718.4	5904351.5	670.5	288.01	-39.1	94.7	DENE
BEND205	40522.9	800156.4	5671.3	176.01	578722.6	5904347.9	671.3	146.01	-73.2	105.5	DENE
BEND206	40522.8	800156.6	5670.3	176.01	578722.5	5904348.1	670.3	146.01	-73.2	88	DENE
BEND207	40523.0	800156.7	5669.8	179.01	578722.6	5904348.2	669.8	149.01	-73.1	74	DENE
BEND208	40522.9	800157.0	5669.8	171.01	578722.4	5904348.4	669.8	141.01	-71.8	74.8	DENE
BEND209	40524.1	800158.3	5669.8	172.51	578722.7	5904350.1	669.8	142.51	-71.1	79.5	DENE
BEND210	40447.9	800159.8	5659.8	265.01	578656.0	5904313.4	659.8	235.01	-70.5	48.6	DENE
BEND211	40448.4	800151.6	5662.9	178.01	578660.5	5904306.5	662.9	148.01	-70	84	DENE
BEND212	40448.3	800151.9	5662.2	184.51	578660.3	5904306.7	662.2	154.51	-68.9	53	DENE
BEND213	40448.3	800152.0	5661.7	185.01	578660.2	5904306.8	661.7	155.01	-67.8	23.9	DENE
BEND214	40448.4	800155.5	5661.3	352.01	578658.6	5904309.9	661.3	322.01	-40	56.1	DENE
BEND215	40448.4	800155.9	5661.3	2.01	578658.4	5904310.2	661.3	332.01	-40	89	DENE
BEND216	40453.5	800158.4	5659.8	173.01	578661.5	5904315.0	659.8	143.01	-40.1	89.5	DENE
BEND217	40454.4	800160.0	5659.8	167.01	578661.5	5904316.8	659.8	137.01	-40.6	73.6	DENE
BEND218	40482.3	800162.5	5665.0	208.01	578684.5	5904332.9	665.0	178.01	-40.9	65.9	DENE
BEND219	40482.5	800165.6	5665.9	244.01	578683.1	5904335.7	665.9	214.01	-41.2	70.2	DENE
BEND220	40484.1	800162.8	5666.5	182.01	578685.8	5904334.1	666.5	152.01	-41	90	DENE
BEND221	40484.1	800162.9	5666.2	180.51	578685.8	5904334.1	666.2	150.51	-41.1	79	DENE
BEND222	40483.5	800163.9	5665.9	179.01	578684.7	5904334.7	665.9	149.01	-40.6	62.5	DENE
BEND223	40483.4	800163.7	5665.9	196.51	578684.7	5904334.5	665.9	166.51	-40	80	DENE
BEND224	40364.3	800187.9	5701.2	189.01	578569.5	5904295.9	701.2	159.01	-39.2	75.9	DENE
BEND225	40364.3	800188.7	5700.3	194.517	578569.1	5904296.5	700.3	164.517	-38	69.9	DENE
BEND226	40364.3	800190.0	5700.0	198.017	578568.5	5904297.7	700.0	168.017	-36.6	81.6	DENE
BEND227	40363.6	800195.2	5699.8	206.517	578565.3	5904301.9	699.8	176.517	-36.2	100	DENE
BEND228	40363.7	800195.8	5699.9	303.517	578565.1	5904302.4	699.9	273.517	-53.8	104.2	DENE
BEND230	40342.5	800210.6	5689.2	185.517	578539.3	5904304.7	689.2	155.517	-53.8	82.5	DENE
BEND231	40342.5	800212.2	5688.6	188.017	578538.5	5904306.0	688.6	158.017	-54.2	75.5	DENE
BEND232	40342.4	800213.2	5688.5	207.017	578538.0	5904306.9	688.5	177.017	-54.7	80.8	DENE
BEND234	40323.8	800204.9	5688.9	183.017	578526.0	5904290.4	688.9	153.017	-55.5	76.5	DENE
BEND235	40323.8	800207.5	5688.5	185.017	578524.7	5904292.6	688.5	155.017	-55	74.3	DENE
BEND236	40324.5	800213.6	5688.6	358.017	578522.2	5904298.3	688.6	328.017	-54.4	105	DENE
BEND237	40302.8	800184.9	5696.3	187.51	578517.8	5904262.6	696.3	157.51	-53.3	70.9	DENE
BEND238	40303.4	800187.3	5696.1	233.017	578517.1	5904265.0	696.1	203.017	-53.2	81	DENE
BEND239	40343.3	800218.5	5688.4	282.017	578536.0	5904311.9	688.4	252.017	-52.7	91.4	DENE

HOLEID	SRG_E	SRG_N	SRG_RL	AZI_SRG	MGA94_E	MGA94_N	MGA94_RL	AZI_MGA	DIP	DEPTH	COMPANY
BEND240	43948.8	801007.1	6021.8	179.025	581264.2	5906797.6	1021.8	149.025	-52.3	306.6	DENE
BEND241	43849.9	801014.6	6002.9	177.525	581174.8	5906754.6	1002.9	147.525	-52	304	DENE
BEND242	43849.9	801015.2	6003.1	177.525	581174.5	5906755.2	1003.1	147.525	-52.5	310.5	DENE
BEND243	43874.6	801022.2	6002.9	175.025	581192.4	5906773.6	1002.9	145.025	-51.8	308	DENE
BEND244	43874.5	801022.4	6002.9	180.025	581192.2	5906773.7	1002.9	150.025	-51.9	330	DENE
BEND245	43825.3	801048.7	5985.0	175.525	581136.4	5906771.9	985.0	145.525	-79.8	310.5	DENE
BEND246	43900.3	801061.4	5991.2	178.025	581195.0	5906820.4	991.2	148.025	-79.8	330	DENE
BEND247	43924.0	800980.9	6019.6	179.025	581255.8	5906762.5	1019.6	149.025	-79.3	289.5	DENE
BEND248	43924.5	800981.4	6019.6	181.525	581256.0	5906763.2	1019.6	151.525	-79.6	280.5	DENE
BEND249	43899.3	800986.2	6017.8	179.025	581231.8	5906754.7	1017.8	149.025	-79	289.5	DENE
BEND250	43873.3	801022.4	6002.9	177.531	581191.2	5906773.1	1002.9	147.531	-78.6	322.5	DENE
BEND251	43927.1	800980.6	6019.6	179.031	581258.7	5906763.8	1019.6	149.031	-75.8	300	DENE
BEND252	43927.1	800981.3	6019.6	173.031	581258.4	5906764.4	1019.6	143.031	-74.6	305	DENE
BEND253	43878.0	800989.6	6016.6	178.031	581211.7	5906747.1	1016.6	148.031	-74	301.7	DENE
BEND254	43897.9	801058.2	5991.2	178.031	581194.6	5906816.4	991.2	148.031	-58.1	307.4	DENE
BEND255	40514.5	800211.9	5633.2	150.538	578687.6	5904391.8	633.2	120.538	-58.1	65	DENE
BEND256	40514.5	800212.2	5633.2	111.038	578687.4	5904392.0	633.2	81.038	-58.4	65.5	DENE
BEND257	40514.2	800211.9	5633.2	209.038	578687.4	5904391.6	633.2	179.038	-57.9	65.4	DENE
BEND258A	40514.2	800212.2	5633.2	294.038	578687.2	5904391.9	633.2	264.038	-57.2	65.5	DENE
BEND259	40485.1	800226.0	5628.3	176.038	578655.1	5904389.2	628.3	146.038	-56.2	59.5	DENE
BEND260	40485.1	800226.0	5628.3	179.038	578655.1	5904389.2	628.3	149.038	-54	61.7	DENE
BEND261	40465.0	800215.3	5625.6	174.038	578643.0	5904370.0	625.6	144.038	-54	42.8	DENE
BEND262A	40423.7	800251.0	5617.9	201.038	578589.4	5904380.3	617.9	171.038	-53.9	60.2	DENE
BEND263	40423.7	800251.1	5617.9	359.038	578589.4	5904380.4	617.9	329.038	-53.8	70	DENE
BEND264	40410.9	800255.9	5593.7	287.038	578575.9	5904378.1	593.7	257.038	-53	34.7	DENE
BEND266	40483.7	800187.9	5637.7	176.038	578672.9	5904355.6	637.7	146.038	-52.2	47.8	DENE
BEND267	40583.1	800282.8	5684.6	182.038	578711.6	5904487.5	684.6	152.038	-51.2	166	DENE
BEND268	40545.9	800172.6	5672.1	183.038	578734.5	5904373.4	672.1	153.038	-50.4	85	DENE
BEND269	40545.9	800173.1	5672.2	181.038	578734.2	5904373.8	672.2	151.038	-49.4	93.5	DENE
BEND270	40545.9	800173.1	5672.1	359.038	578734.2	5904373.9	672.1	329.038	-48.4	91	DENE
BEND271	40545.9	800173.2	5672.1	358.038	578734.1	5904373.9	672.1	328.038	-47.9	100	DENE
BEND272	40565.6	800188.8	5674.6	180.038	578743.4	5904397.3	674.6	150.038	-65	103	DENE
BEND273	40565.6	800189.0	5674.6	178.038	578743.3	5904397.5	674.6	148.038	-65	104.5	DENE
BEND274	40565.5	800189.1	5674.6	30	578743.2	5904397.6	674.6	0	-64.6	103.8	DENE
BEND275	43876.7	800991.0	6016.7	179.005	581209.8	5906747.6	1016.7	149.005	-64	292.5	DENE
BEND276	43944.0	800884.0	6054.1	181.005	581321.6	5906688.6	1054.1	151.005	-64.7	247.4	DENE
BEND277	43923.4	800877.0	6055.6	199.005	581307.2	5906672.2	1055.6	169.005	-65.1	259.5	DENE
BEND278	43923.4	800877.4	6055.6	195.005	581307.1	5906672.6	1055.6	165.005	-65.3	241.7	DENE
BEND279	43899.3	800876.2	6055.7	190.505	581286.8	5906659.5	1055.7	160.505	-65.9	259.9	DENE
BEND281	43825.4	801053.5	5988.6	178.005	581134.1	5906776.1	988.6	148.005	-61.4	206.7	DENE
BEND282	43850.2	801051.1	5989.9	182.508	581156.8	5906786.4	989.9	152.508	-61	259	DENE
BEND283	40276.6	800148.2	5714.0	184.008	578513.5	5904217.7	714.0	154.008	-59.2	73.7	DENE
BEND284	40276.7	800147.1	5714.0	183.008	578514.0	5904216.8	714.0	153.008	-64	70.1	DENE
BEND285A	40314.4	800121.5	5739.2	83.008	578559.6	5904213.4	739.2	53.008	-64	94.3	DENE
BEND286	40288.8	800106.7	5739.4	169.008	578544.7	5904187.9	739.4	139.008	-63.7	49.8	DENE
BEND287	40313.2	800073.3	5767.4	177.008	578582.6	5904171.1	767.4	147.008	-63.9	64.4	DENE
BEND288	40313.2	800074.1	5767.4	125.008	578582.2	5904171.8	767.4	95.008	-64	52.5	DENE
BEND289	40337.5	800082.6	5766.3	181.008	578599.0	5904191.3	766.3	151.008	-61.2	55.8	DENE
BEND290	40361.5	800090.0	5765.0	184.008	578616.1	5904209.7	765.0	154.008	-62.3	61.2	DENE
BEND291	40361.5	800090.4	5765.0	182.008	578615.9	5904210.1	765.0	152.008	-60.1	70.5	DENE
BEND292	40515.8	800039.7	5812.8	145.008	578774.8	5904243.3	812.8	115.008	-59.8	115.4	DENE
BEND293	40537.3	800044.9	5812.4	177.012	578790.8	5904258.6	812.4	147.012	-58.6	82.4	DENE
BEND294	40568.8	800059.6	5811.1	161.012	578810.8	5904287.1	811.1	131.012	-57.8	109.9	DENE
BEND295	40411.0	800096.6	5765.4	178.012	578655.6	5904240.2	765.4	148.012	-56.7	76.6	DENE
BEND296	40387.7	800092.4	5765.2	173.012	578637.6	5904224.9	765.2	143.012	-75.5	75	DENE
BEND297	40639.8	800285.0	5687.7	174.012	578759.6	5904517.8	687.7	144.012	-75.5	180.8	DENE
BERD0002	40583.3	800254.2	5692.4	179.985	578726.1	5904462.9	692.4	149.985	-73.7	163	Austminex
BERD0003	40437.2	800109.6	5764.4	176.985	578671.8	5904264.6	764.4	146.985	-72.8	100.67	Austminex
BERD0004	40463.1	800119.3	5764.0	182.985	578689.4	5904285.9	764.0	152.985	-72.3	116.2	Austminex
BERD0005	40490.2	800128.0	5764.4	179.985	578708.5	5904307.0	764.4	149.985	-71.6	109.9	Austminex
BERD0006	40487.1	800132.9	5764.4	345.985	578703.4	5904309.7	764.4	315.985	-70.5	170	Austminex
BERD0007	40562.9	800123.6	5766.4	174.985	578773.7	5904339.5	766.4	144.985	-70	125.15	Austminex
BERD0008	40563.0	800122.7	5766.6	177.985	578774.2	5904338.8	766.6	147.985	-54.2	104.9	Austminex
BERD0009A	40608.3	800135.9	5767.5	26.985	578806.8	5904372.9	767.5	356.985	-54.2	155.8	Austminex
BERD0010	43852.6	800886.4	6050.9	184.985	581241.2	5906645.0	1050.9	154.985	-53.8	263.4	Austminex
BERD0011	43947.9	800882.8	6054.2	187.985	581325.5	5906689.5	1054.2	157.985	-53	270	Austminex
BERD0012	43796.9	800970.5	6019.0	178.985	581151.0	5906689.9	1019.0	148.985	-52	315	Austminex
BERD0013	43911.7	800703.6	6063.2	184.985	581383.9	5906516.2	1063.2	154.985	-52.3	279	Austminex
BERD0014	43761.4	800847.7	6023.6	180.985	581181.6	5906565.8	1023.6	150.985	-51.9	240	Austminex
BERD0018	43796.3	800970.7	6018.9	180.985	581150.3	5906689.8	1018.9	150.985	-51.8	282.85	Austminex
BERD0019	43976.1	801043.4	6025.1	180.985	581269.7	5906842.7	1025.1	150.985	-51.3	216.29	Austminex
BERD0020	43976.1	801047.6	6025.0	174.985	581267.6	5906846.3	1025.0	144.985	-51	223.83	Austminex
BERD0021	43748.1	800974.2	6013.2	180.985	581106.8	5906668.8	1013.2	150.985	-65.6	312.12	Austminex

HOLEID	SRG_E	SRG_N	SRG_RL	AZI_SRG	MGA94_E	MGA94_N	MGA94_RL	AZI_MGA	DIP	DEPTH	COMPANY
BERD0023	43825.1	800825.2	6035.8	180.985	581248.0	5906578.2	1035.8	150.985	-64.6	217.45	Austminex
BERD0024A	43846.8	800817.1	6040.0	152.985	581270.9	5906582.1	1040.0	122.985	-64.2	209.46	Austminex
BERD0026	44000.7	800954.3	6053.0	180.985	581335.6	5906777.8	1053.0	150.985	-64.8	287.3	Austminex
BERD0027	43902.2	800801.9	6053.3	206.985	581326.4	5906596.6	1053.3	176.985	-65	225.05	Austminex
BERD0028	44301.6	801080.1	6064.5	180.985	581533.3	5907037.2	1064.5	150.985	-61.4	174.9	Austminex
BFDD001	44137.0	801270.5	5995.8	145.69	581295.5	5907119.8	995.8	115.69	-60.5	302.9	
CURD001	44001.1	801158.7	6032.9	178.012	581233.7	5906955.1	1032.9	148.012	-59.9	326	DENE
EUDD001	44386.2	801122.4	6082.1	173.56	581585.3	5907116.2	1082.1	143.56	-59.8	446.8	
EUDD005	44386.7	801122.0	6082.1	185.36	581585.9	5907116.0	1082.1	155.36	-58.4	439.2	
UW002	40396.4	800161.6	5657.4	177.7	578610.4	5904289.2	657.4	147.7	-71	53.9	MACQ
UW003	40396.3	800161.6	5656.6	177.7	578610.4	5904289.1	656.6	147.7	-71	50.05	MACQ
UW004	40396.4	800162.2	5656.4	177.7	578610.2	5904289.7	656.4	147.7	-70.6	35	MACQ
UW005	40396.6	800161.3	5657.0	172.7	578610.8	5904289.0	657.0	142.7	-70.3	37	MACQ
UW006	40396.4	800162.8	5656.4	30	578609.9	5904290.2	656.4	0	-69.8	52.05	MACQ
UW007	40396.4	800161.8	5656.4	177.7	578610.4	5904289.3	656.4	147.7	-69.5	27.6	MACQ
UW008	40386.2	800173.5	5657.0	177.7	578595.7	5904294.4	657.0	147.7	-69	44.4	MACQ
UW009	40386.2	800173.6	5656.7	177.7	578595.6	5904294.5	656.7	147.7	-68.2	54.05	MACQ
UW010	40386.1	800174.7	5656.2	30	578595.0	5904295.4	656.2	0	-67.9	63.55	MACQ
UW011	40385.5	800175.3	5656.3	352.7	578594.2	5904295.5	656.3	322.7	-67.3	44.5	MACQ
UW012	40395.2	800163.9	5656.3	357.7	578608.2	5904290.6	656.3	327.7	-66.3	41.5	MACQ
UW013	40407.1	800155.4	5656.7	177.7	578622.9	5904289.2	656.7	147.7	-65.4	28.5	MACQ
UW014	40407.1	800155.3	5657.4	177.7	578622.9	5904289.1	657.4	147.7	-53.2	39	MACQ
UW015	40407.1	800155.9	5656.4	177.7	578622.6	5904289.6	656.4	147.7	-53.2	27.3	MACQ
UW016	40407.1	800156.6	5656.4	30	578622.3	5904290.2	656.4	0	-51.8	30.5	MACQ
UW017	40406.6	800156.9	5656.4	357.7	578621.6	5904290.2	656.4	327.7	-50.6	38.05	MACQ
UW018	40417.1	800154.7	5657.3	177.7	578631.8	5904293.5	657.3	147.7	-49.7	52.65	MACQ
UW019	40417.1	800154.6	5656.7	177.7	578631.9	5904293.5	656.7	147.7	-48.8	45.75	MACQ
UW020	40417.0	800155.0	5656.5	177.7	578631.6	5904293.7	656.5	147.7	-48.1	25	MACQ
UW020A	40416.6	800155.4	5656.4	187.7	578631.1	5904293.9	656.4	157.7	-47.8	27.2	MACQ
UW021	40417.0	800155.6	5656.4	30	578631.3	5904294.3	656.4	0	-48	47.95	MACQ
UW022	40417.3	800157.5	5656.4	357.7	578630.6	5904296.1	656.4	327.7	-48.3	48.1	MACQ
UW023	40418.0	800112.3	5659.5	177.7	578653.8	5904257.3	659.5	147.7	-48.5	42.5	MACQ
UW024	40417.7	800112.7	5659.6	30	578653.4	5904257.5	659.6	0	-59.5	28.85	MACQ
UW025	40417.3	800114.5	5659.5	359.2	578652.1	5904258.9	659.5	329.2	-59.5	19.85	MACQ
UW026	40407.4	800119.3	5659.8	177.7	578641.1	5904258.0	659.8	147.7	-59.8	32.25	MACQ
UW027	40407.3	800119.9	5659.7	30	578640.8	5904258.5	659.7	0	-58.6	35.45	MACQ
UW028	40406.7	800121.4	5659.7	354.7	578639.5	5904259.5	659.7	324.7	-57.2	19.1	MACQ
UW029	40397.9	800121.0	5660.0	177.7	578632.1	5904254.8	660.0	147.7	-56.9	31.65	MACQ
UW030	40397.9	800121.6	5659.9	30	578631.7	5904255.3	659.9	0	-55	21.45	MACQ
UW031	40397.3	800123.0	5659.7	357.7	578630.6	5904256.2	659.7	327.7	-54.9	14	MACQ
UW032	40388.4	800109.3	5660.3	177.7	578629.8	5904239.9	660.3	147.7	-54.2	21.4	MACQ
UW033	40387.8	800111.3	5659.9	357.7	578628.2	5904241.3	659.9	327.7	-52.4	40	MACQ
UW034	40387.9	800110.1	5660.4	357.7	578628.9	5904240.3	660.4	327.7	-55.2	29.3	MACQ
UW035	40388.3	800109.6	5660.4	177.7	578629.5	5904240.1	660.4	147.7	-55.2	20.6	MACQ
UW036	40386.1	800174.5	5656.2	222.7	578595.1	5904295.2	656.2	192.7	-56.1	24.2	MACQ
UW036A	40386.1	800174.5	5656.2	222.7	578595.1	5904295.2	656.2	192.7	-55.5	29.45	MACQ
UW037	40384.6	800174.6	5656.5	258.2	578593.8	5904294.6	656.5	228.2	-55.2	48	MACQ
UW038	40385.9	800173.8	5656.3	216.7	578595.3	5904294.4	656.3	186.7	-54.3	33.4	MACQ
UWG1	40418.4	800113.0	5659.4	107.7	578653.9	5904258.1	659.4	77.7	-54.2	5.9	MACQ
UWG2	40418.9	800113.7	5659.1	68.45	578653.9	5904258.9	659.1	38.45	-54.3	6.1	MACQ
UWG3	40418.6	800114.3	5659.2	47.12	578653.4	5904259.3	659.2	17.12	-53.7	6.9	MACQ
WBDD007	40276.9	800144.4	5714.5	41.01	578515.6	5904214.5	714.5	11.01	-53.6	75.1	JAB
WBRC003	40746.5	800463.6	5745.5	43.01	578762.7	5904725.8	745.5	13.01	-53.2	24	JAB
WDDD001	40601.3	800257.5	5690.0	357.25	578740.0	5904474.6	690.0	327.25	-52.8	485.7	

${ }^{1}$ Easting and northing coordinates and azimiuth are reported in Stockman Regional Grid.

APPENDIX B: Summary of Mineral Resource intercepts from the Currawong and Wilga deposits.

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
08CWDD001	B_MS	17.17	13,629	25,000	0.66	23.9
	JUPP_MS	12.39	8,463	36,340	0.60	21.0
08CWDD003	B_MS	15.94	11,655	35,675	0.78	22.4
	J_MS	25.71	21,908	23,924	0.53	24.3
	JUPP_MS	15.20	18,580	36,573	0.47	25.9
	K_DSFW	6.40	33,602	91,093	0.33	29.1
	K_MS	39.90	13,774	43,379	0.84	36.5
	M_MS	3.75	84,579	54,390	0.58	35.1
	M_SS	4.24	10,741	4,071	0.07	8.1
08CWDD004	M_MS	32.47	18,358	56,371	0.99	40.2
	M_SS	2.39	4,970	30,685	0.22	9.7
	MLOW_SS	1.00	1,319	27,760	0.74	12.0
08CWDD005	M_SS	38.87	8,517	13,040	0.32	18.9
	MLOW_SS	6.87	5,513	8,570	0.15	7.5
08CWDD005W2	M_SS	37.37	8,838	14,522	0.36	14.5
	MLOW_SS	4.92	1,393	3,746	0.12	4.5
08CWDD006	M_DSHW	0.60	871	24,686	0.54	17.0
	M_MS	8.92	45,344	27,236	0.41	28.8
	M_SS	0.50	2,302	51,320	0.55	10.0
	MUPP_MS	16.56	12,544	69,144	3.19	42.3
08CWDD007	M_MS	34.97	28,822	41,619	1.54	39.7
08CWDD008	M_DSHW	1.05	9,015	148,174	6.64	277.4
	M_MS	25.93	21,765	20,997	1.02	23.9
	M_SS	1.34	709	15,092	0.35	7.4
08CWDD009	M_MS	5.66	12,791	57,875	1.77	126.5
08CWDD009W2	M_DSHW	0.81	406	19,759	0.57	19.0
	M_MS	7.38	22,899	107,760	3.42	124.8
	M_SS	1.25	9,372	113,423	19.32	267.8
08CWDD010	A_MS	16.14	21,128	41,441	1.52	42.1
	A_SSFW	1.33	197	152	0.02	6.6
08CWDD011	B_DSFW	3.54	2,961	32,639	11.47	60.4
	B_DSHW	2.95	9,318	8,108	0.33	15.5
	B_MS	15.55	14,105	65,713	1.81	67.9
	BL_DSFW	0.98	1,155	18,276	0.16	3.0
08CWDD012	B_DSFW	7.17	5,502	5,918	0.71	14.6
	B_DSHW	117.17	5	13	0.00	0.1
	B_LOW	2.22	15,072	24,029	0.46	26.7
	B_MS	8.71	24,588	23,319	0.54	34.8
	BL_DSFW	0.97	20,207	43,917	4.80	149.0
	M_MS	5.35	15,651	78,227	2.09	64.7
08CWDD013	M_MS	20.87	17,841	41,904	0.63	30.1
	M_SS	5.29	54,049	9,750	0.19	22.9
	MLOW_SS	7.79	11,489	10,675	0.07	11.3
08CWDD014	B_MS	17.86	12,242	23,728	0.61	20.6
	J_MS	25.79	13,881	19,451	0.55	21.1
	JUPP_MS	21.08	12,545	28,764	0.50	22.3
	K_DSFW	1.89	1,362	2,545	0.06	2.0
	K_MS	71.04	8,762	26,704	0.47	18.2
	M_SS	1.32	47,523	13,646	0.04	16.7
08CWDD015	M_DSHW	1.00	624	15,640	0.47	13.0
	M_MS	8.70	40,017	23,524	0.51	21.4
	MUPP_MS	15.02	11,678	58,305	3.56	47.7
08CWDD016	M_DSHW	3.96	7,477	19,889	0.81	17.8
	M_SS	21.39	2,257	5,086	0.10	5.6
	MLOW_SS	0.97	1,500	14,819	0.10	4.0
	MUPP_MS	3.13	14,711	163,529	8.80	226.4
10CWDD001	M_DSHW	1.39	25	127	0.02	0.5
	M_SS	5.93	6,043	41,268	0.51	26.8
	MUPP_MS	19.40	8,124	83,647	2.09	64.5
10CWDD002	M_DSHW	2.07	20,394	70,109	0.50	42.2
	M_MS	25.68	29,414	32,686	0.49	22.0
	M_SS	2.57	11,583	120,916	18.57	118.4
	MLOW_SS	1.90	3,516	28,787	0.05	7.0
10CWDD003	M_DSHW	1.85	4,944	97,904	1.64	32.8
	MUPP_MS	10.35	20,959	47,930	1.71	64.8
10CWDD004	M_DSHW	0.64	14,102	217,515	2.01	313.0
	M_MS	28.06	13,679	43,476	0.81	17.4
	M_SS	1.85	25	1,653	0.16	0.8
10CWDD005	MUPP_MS	27.35	28,089	30,430	1.21	55.8

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
10CWDD006	M_DSHW	2.11	2,010	52,188	0.85	12.9
	MUPP_MS	19.11	16,131	55,732	1.26	54.8
10CWDD007	K_HWSZ	1.51	4,360	11,104	0.15	11.3
	M_MS	35.10	16,827	63,573	0.57	31.2
	M_SS	14.25	1,190	11,629	0.14	4.5
10CWDD008	M_SS	226.31	345	611	0.02	0.8
	MLOW_MS	10.08	19,925	60,962	0.40	38.0
	MLOW_SS	2.99	2,741	14,345	0.29	14.3
10CWDD009	M_MS	3.56	13,949	18,316	0.83	27.8
	M_SS	14.49	13,423	29,247	0.96	31.8
	MLOW_MS	3.62	11,793	25,081	1.13	17.3
	MLOW_SS	5.35	68	554	0.04	0.6
10HMS001	M_SS	27.56	6,855	5,303	0.09	6.5
	MLOW_SS	11.36	9,040	10,615	0.10	12.1
10HMS003	M_MS	30.31	19,090	45,483	0.85	42.0
	M_SS	14.43	7,138	7,208	0.04	12.1
10MET001	M_DSHW	0.91	4,199	20,292	1.51	18.0
	M_MS	39.26	28,761	42,407	1.51	23.2
10MET002	M_DSHW	1.59	6,172	23,277	0.17	24.1
	M_MS	7.02	18,551	41,792	0.72	36.7
	M_SS	11.51	10,852	16,885	0.16	9.2
	MLOW_SS	2.24	2,851	592	0.11	4.4
	MUPP_MS	11.56	11,660	96,500	2.45	99.2
10MET004	M_MS	39.91	23,359	43,875	1.83	30.7
	M_SS	0.51	13,265	27,857	0.43	9.0
10MET005	MUPP_MS	14.44	16,928	61,459	1.04	58.0
10MET006	B_DSHW	2.92	8,136	16,156	0.14	15.0
	B_LOW	4.69	26,680	55,499	0.99	54.6
	B_MS	3.31	26,740	21,076	0.49	33.0
	BL_DSFW	4.69	6,599	29,458	0.15	17.5
	BL_DSHW	0.88	10,615	39,381	1.56	62.2
	K_HWSZ	2.05	35,942	32,240	0.48	28.4
	M_MS	26.06	22,750	46,252	1.76	48.0
	M_SS	6.03	4,832	12,805	1.53	22.3
	SHR_ZONE	3.52	14,015	30,755	0.42	37.4
10MET007	B_MS	21.51	15,219	35,826	0.55	29.7
	J_MS	4.73	44,493	13,728	0.27	34.4
	K_MS	41.73	11,365	30,470	0.89	32.8
	M_MS	15.07	74,161	47,294	2.15	67.6
	M_SS	6.30	25,443	25,702	0.32	19.9
10MET008	B_MS	3.48	23,036	22,819	1.05	35.1
	M_MS	38.32	17,851	50,846	0.76	31.5
	M_SS	2.96	480	6,593	0.08	3.0
	MLOW_SS	1.97	600	2,855	0.04	0.8
10MET009	K_HWSZ	1.99	63	228	0.03	0.5
	M_MS	27.67	23,708	61,416	0.71	39.5
	M_SS	1.50	12,011	88,485	0.52	31.3
10MET010	M_DSHW	2.99	646	18,397	0.38	13.3
	M_MS	21.84	9,515	84,692	3.48	63.5
	M_SS	3.09	6,035	9,276	0.10	6.2
10MET011	M_DSHW	0.80	1,131	48,527	11.17	40.7
	M_MS	17.84	11,641	96,053	5.02	101.9
	M_SS	1.10	6,001	62,592	6.59	122.6
11CWDD001	M_MS	26.25	19,301	32,496	0.58	25.4
	M_SS	14.18	11,789	14,426	0.39	9.0
	MLOW_SS	10.72	7,489	16,626	0.11	12.2
11CWDD002	B_LOW	9.42	38,717	37,886	0.58	48.3
	BL_DSFW	8.58	5,470	19,320	0.18	13.5
	BL_DSHW	0.95	70	177	0.01	0.5
	K_DSFW	6.81	59,749	222,853	0.72	46.9
	K_HWSZ	6.19	13,849	14,006	0.76	37.9
	K_MS	68.08	6,746	28,418	0.74	23.6
	M_MS	4.82	90,095	26,835	0.27	37.4
	M_SS	10.01	33,273	31,542	0.27	21.4
11CWDD003	M_SS	2.39	17,489	20,646	0.09	14.9
	MLOW_MS	9.40	26,311	41,663	2.16	61.1
	MLOW_SS	1.39	691	14,992	0.41	8.4
11CWDD004	M_MS	29.78	24,513	39,068	0.66	14.2
	M_SS	6.52	4,293	18,466	0.41	12.3
11CWDD006	M_SS	2.87	22,475	4,110	0.08	5.0
	MLOW_MS	8.11	37,120	46,758	2.54	59.7
	MLOW_SS	0.99	72	228	0.07	0.5

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
11CWDD008	A_MS	8.49	15,305	48,056	5.42	86.9
	A SSFW	3.44	2,658	1,366	0.16	4.9
	A_SSHW	0.98	563	2,903	0.06	4.0
	B_MS	16.67	21,472	37,556	1.25	37.1
	J_MS	23.15	40,447	26,013	2.12	26.6
	K_DSFW	3.87	3,970	32,733	0.42	15.1
	K_MS	35.72	23,643	50,885	0.93	43.3
	KHW_MS	5.91	25	78	0.01	0.5
11CWDD009	M_SS	16.21	2,777	7,636	0.19	6.6
	MLOW_MS	9.63	36,062	62,930	0.74	56.8
11CWDD010	M_DSHW	0.61	9,861	23,868	0.62	26.7
	M_MS	1.61	1,861	3,613	0.09	4.0
	M_SS	0.68	1,517	2,395	0.17	4.4
	MUPP_MS	2.54	33,561	60,532	2.61	66.5
$11 \mathrm{CWDD012}$	M_MS	38.68	44,425	30,917	1.41	34.2
11CWDD013	B_MS	25.02	25,349	27,183	1.06	30.1
11CWDD014	B_DSFW	1.10	11,095	9,925	1.87	24.6
	B_LOW	5.49	21,919	18,418	0.42	28.7
	B_MS	2.99	16,876	21,850	0.76	25.3
	BL_DSFW	5.19	6,198	27,551	0.60	39.8
	BL_DSHW	1.70	15,417	3,249	0.14	27.8
	M_DSHW	1.59	1,244	22,739	0.17	9.0
	M_MS	14.34	14,739	77,984	1.63	55.9
	M_SS	10.14	2,913	11,360	0.16	5.4
11CWDD015	A_MS	10.77	23,289	32,934	2.42	42.0
	A_SSFW	3.72	5,565	14,145	0.62	16.4
11CWDD016	A_MS	15.53	41,346	24,885	1.11	31.2
	A_SSFW	0.93	289	221	0.01	0.5
	M_MS	8.60	26,511	40,854	1.04	36.4
	M_SS	26.57	4,362	15,920	0.05	8.1
11CWDD018	M_DSHW	1.74	5,968	54,688	0.58	15.3
	M_MS	15.20	11,531	38,790	0.55	20.2
	M_SS	0.79	132	824	0.04	0.5
11CWDD019	M_MS	3.42	18,995	44,748	0.81	50.9
11CWDD020	MLOW_MS	3.36	38,411	70,219	0.99	61.9
	MLOW_SS	5.93	7,243	2,840	0.16	6.6
11CWDD021	MLOW_SS	22.87	8,358	6,704	0.28	10.5
11CWDD022	M_SS	8.10	3,176	6,600	0.09	3.1
	MLOW_SS	8.95	6,330	13,559	0.12	30.3
11CWDD023	M_SS	4.64	5,133	15,314	0.04	5.4
	MLOW_SS	12.08	3,606	3,645	0.03	8.5
11CWDD024	M_SS	7.22	5,905	13,442	0.05	6.8
	MLOW_SS	0.46	30,393	2,478	0.04	22.0
11CWDD025	M_SS	14.14	10,277	3,814	0.04	9.3
	MLOW_SS	23.95	11,908	6,843	0.30	9.4
11CWDD026	MLOW_SS	17.30	9,213	5,765	0.11	13.5
11CWDD027	M_SS	226.42	13	88	0.00	0.0
	MLOW_MS	4.86	29,852	55,799	0.83	42.0
	MLOW_SS	12.58	4,817	5,253	0.26	7.1
11CWDD028	A_MS	13.56	38,616	15,048	0.98	24.2
	A_SSFW	4.42	90	97	0.01	0.5
	A_SSHW	0.88	3,033	10,587	0.66	7.0
	M_SS	16.98	6,798	17,124	0.08	21.6
11CWDD029	A_MS	12.39	28,812	22,092	0.84	24.2
11CWDD030	A_MS	8.25	36,484	2,603	0.42	14.3
	A_SS	1.62	4,642	4,391	0.12	12.1
	A_SSFW	0.64	4,928	593	0.27	3.0
	A_SSHW	3.30	13,035	943	0.38	6.1
11CWDD031	A_MS	3.77	14,260	83,135	3.31	82.3
	A_SS	9.30	18,679	13,582	0.37	35.5
	A_SSFW	0.77	60	278	0.00	0.5
	A_SSHW	0.91	7,063	53,697	2.20	43.0
11CWDD034	A_MS	1.91	70,501	1,972	0.71	22.3
	A_SS	4.80	35,922	4,543	0.49	26.2
	A_SSFW	0.82	10,576	919	0.07	5.0
	A_SSHW	4.54	10,226	2,516	0.14	8.4
11CWDD035	A_SS	5.62	18,392	18,245	0.83	27.4
	A_SSFW	1.58	4,731	2,384	0.46	8.4
11CWDD036	A_MS	5.81	15,104	94,263	2.24	100.8
$11 \mathrm{CWDD037}$	A_SS	4.83	10,103	32,128	0.11	22.1
11CWDD039	A_SS	3.02	4,099	12,874	0.01	10.1
	A_SSHW	0.84	25	160	0.00	0.5

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
11CWDD040	MLOW_MS	3.07	33,233	68,628	0.89	57.3
	MLOW_SS	0.99	10,926	19,037	0.23	12.0
11CWDD041	MLOW_MS	1.07	75,836	84,814	0.79	123.0
	MLOW_SS	3.90	25	52	0.01	0.5
11CWDD042	MLOW_SS	22.04	10,066	7,829	0.11	13.5
11CWDD043	MLOW_SS	16.99	6,252	6,887	0.33	7.9
11CWDD044	MLOW_MS	8.39	37,555	50,442	2.17	61.7
	MLOW_SS	4.99	6,496	1,062	0.02	5.4
11CWDD045	M_SS	0.68	3,721	31,338	0.25	14.8
	MLOW_MS	1.36	26,977	5,375	0.89	15.3
	MLOW_SS	10.30	12,996	7,449	0.43	14.3
11GT005	B_DSHW	0.34	3,350	11,639	0.76	11.0
21CWDD001	M_MS	31.58	29,407	35,687	2.94	58.2
	M_SS	2.74	2,534	11,080	0.34	11.6
21CWDD002	K_HWSZ	0.99	1,438	12,170	0.01	8.8
	M_DSHW	2.96	9,464	12,192	0.49	24.5
	M_MS	26.17	20,726	44,515	0.33	27.0
	M_SS	2.95	16,989	19,759	0.05	14.4
	MLOW_SS	0.98	2,513	18,096	0.03	3.2
21CWDD003	B_DSHW	1.12	4,691	15,352	0.50	21.4
	B_MS	21.55	10,728	16,654	0.44	20.7
	K_DSFW	12.27	2,585	4,612	0.82	23.9
	K_HWSZ	3.86	8,454	12,037	0.15	12.3
	K_MS	5.00	9,725	21,315	0.23	18.9
	M_MS	22.05	45,421	54,626	0.66	33.4
21CWDD004	B_DSHW	0.42	5,810	4,843	0.24	19.8
	B_MS	25.60	11,611	32,160	0.30	34.7
	J_MS	19.33	26,490	18,613	0.49	27.4
	JUPP_MS	8.83	29,980	34,586	0.30	31.2
	K_DSFW	0.85	9,853	24,743	1.48	21.3
	K_MS	30.50	14,488	51,053	0.72	38.2
	KHW_MS	11.80	15,059	38,245	0.31	23.4
21CWDD005	B_DSHW	0.90	24,162	28,573	0.24	26.5
	B_MS	18.86	11,820	17,061	0.29	16.8
	K_HWSZ	2.70	47	95	0.00	0.3
	K_MS	36.84	20,115	46,856	0.66	61.7
	M_MS	10.88	54,212	21,220	0.34	25.7
BEDD0025	M_SS	23.96	14,863	22,674	0.54	20.1
BEDD0029	B_DSFW	1.62	25	100	0.01	1.0
	B_MS	22.31	20,540	22,483	0.69	26.5
BEDD0030	MUPP_MS	16.89	27,470	53,881	0.77	62.4
BEDD0031	M_MS	5.94	94,890	22,201	1.27	59.8
	M_SS	1.01	2,300	550	0.03	1.0
	MUPP_MS	12.42	13,100	84,093	6.21	65.2
BEDD0032	MUPP_MS	28.85	24,554	52,444	0.75	47.7
BEDD0033	M_DSHW	1.91	6,478	47,452	0.91	60.0
	M_SS	21.63	4,728	11,226	0.35	7.5
	MLOW_SS	1.44	4,113	30,174	0.10	9.5
	MUPP_MS	5.22	39,779	76,442	2.47	102.6
BEDD0034	M_MS	11.50	16,342	93,515	4.43	112.3
	M_SS	4.83	2,517	15,785	0.12	4.9
BEDD0035	M_DSHW	0.54	1,150	18,800	4.11	49.0
	M_MS	26.50	10,563	40,577	0.91	28.4
BEDD0036	M_MS	35.64	19,752	36,795	1.29	40.2
	M_SS	4.83	10,420	10,460	0.04	10.0
BEDD0037	M_MS	29.32	21,332	73,956	0.78	49.5
	M_SS	5.88	27,075	6,892	0.33	26.0
BEND024	A_MS	14.01	19,752	30,378	1.30	41.5
	A_SSFW	1.32	70	330	0.01	3.0
	A_SSHW	0.47	2,400	31,000	7.20	25.0
BEND034	B_DSHW	1.00	200	100	0.01	1.0
	B_MS	19.72	8,865	24,031	0.40	38.6
BEND043	B_DSFW	1.98	10	50	0.01	1.0
	B_MS	20.75	29,388	20,181	1.54	24.6
BEND045	MUPP_MS	27.33	14,550	53,225	0.53	37.8
BEND048	M_DSHW	1.58	4,685	51,949	0.01	84.6
	M_MS	21.13	12,387	55,895	0.02	35.7
	M_SS	2.30	177	2,100	0.07	2.3
BEND051	B_DSHW	1.00	5,100	10,800	0.65	11.0
	M_MS	2.36	14,189	33,270	0.06	43.0
BEND055	M_SS	13.33	3,195	3,538	0.10	8.2
	MLOW_MS	10.46	18,887	52,919	2.00	65.4

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
	MLOW_SS	1.36	40	150	0.03	2.5
BEND055W1	MLOW MS	10.55	19,008	50,551	2.52	58.2
	MLOW_SS	1.68	30	150	0.01	2.0
BEND059	B_MS	0.57	8,200	16,600	0.55	21.0
	M_DSHW	1.97	1,280	20,530	4.88	31.0
	M_MS	28.38	18,571	35,339	1.82	26.8
	M_SS	1.09	10,800	5,300	0.15	14.0
	MLOW_SS	0.99	1,290	13,100	0.05	4.0
BEND059W2	M_DSHW	1.94	1,680	20,600	5.48	31.1
	M_MS	26.71	19,046	32,304	2.31	26.5
	M_SS	2.79	2,869	1,028	0.09	2.8
BEND060	A_MS	2.26	5,467	63,928	10.99	60.4
	A_SSFW	1.96	4,250	20,200	1.08	15.3
	B_MS	19.38	22,783	23,120	0.93	28.5
	J_MS	23.06	10	450	0.01	0.9
	K_MS	45.23	7,319	44,419	1.42	32.6
	KHW_MS	8.84	2,801	28,413	0.55	20.9
	M_MS	5.78	83,319	52,588	0.48	50.5
	M_SS	5.26	12,521	12,505	0.32	20.7
BEND060W1	K_DSFW	1.58	267	3,489	0.10	0.5
	K_MS	45.25	7,610	45,976	1.38	29.9
	KHW_MS	334.28	81	926	0.02	0.5
	M_MS	6.11	69,498	49,034	0.58	35.2
	M_SS	6.11	8,170	10,992	0.36	12.0
BEND060W2	A_MS	226.20	52	491	0.09	0.4
	A_SSFW	1.96	4,400	19,000	0.88	8.6
	B_MS	18.58	21,861	29,358	1.12	23.9
BEND062	M_MS	2.89	9,097	28,309	0.27	25.8
	M_SS	20.61	16,996	23,026	0.28	26.3
	MLOW_SS	8.64	22,799	4,765	0.08	28.2
BEND062W1	M_MS	2.97	10,665	31,671	0.23	29.4
	M_SS	19.86	14,187	24,002	0.29	27.6
BEND063	B_DSHW	1.57	1,868	8,731	0.37	7.8
BEND064	MLOW_SS	20.44	8,145	3,193	0.28	8.3
BEND066	A_SS	4.10	31,417	2,453	0.19	13.9
	A_SSHW	1.98	5	50	0.01	0.1
	MLOW_SS	1.89	5	30	0.01	0.2
BEND126	M_MS	34.00	13,916	45,494	1.81	51.5
	M_SS	6.42	25,480	12,388	0.07	19.0
BEND127	B_MS	3.44	17,115	21,718	0.29	16.6
	M_MS	33.70	29,663	66,880	1.08	46.3
	M_SS	0.46	14,600	20,400	1.05	42.0
	MLOW_SS	0.60	22,800	46,600	0.05	74.0
BEND128	B_MS	2.86	11,234	52,231	5.12	69.5
	J_MS	48.85	285	780	0.03	1.6
	M_MS	16.46	25,847	17,315	0.49	27.4
	M_SS	20.64	8,030	41,254	0.18	19.6
BEND129	B_MS	20.66	10,268	25,966	0.31	24.8
	K_DSFW	1.00	6,000	24,000	1.55	36.0
	K_MS	41.39	10,424	50,363	0.86	42.5
	M_MS	9.62	50,899	66,974	0.72	43.5
	M_SS	6.99	1,681	10,714	1.83	15.1
BEND130	B_DSFW	2.36	2,227	24,681	1.53	25.0
	B_MS	19.88	17,771	57,796	2.56	55.2
BEND131	M_SS	25.71	2,836	5,432	0.07	4.2
	MLOW_SS	9.66	15,610	5,948	0.04	26.9
BEND132	B_DSFW	0.86	14,800	10,800	0.43	22.0
	B_LOW	7.20	28,791	33,369	0.40	30.3
	B_MS	7.24	21,559	26,635	0.67	33.7
	BL_DSFW	1.88	10,566	22,924	0.19	22.0
	M_DSHW	27.46	57	1,252	0.02	0.6
	M_MS	14.46	20,015	79,845	2.07	84.1
	M_SS	2.77	3,868	15,511	0.29	6.8
	SHR_ZONE	3.29	11,783	27,707	0.71	37.7
BEND133	MUPP_MS	22.48	20,907	28,866	0.76	38.7
BEND134	B_MS	2.80	15,261	17,801	0.61	25.9
	BL_DSHW	0.54	16,236	15,315	0.30	32.5
	K_HWSZ	6.35	4,652	4,439	0.29	7.8
	M_MS	27.31	26,815	40,616	0.47	23.0
	M_SS	1.32	12,072	8,214	1.18	10.7
	SHR_ZONE	1.86	13,898	44,334	0.79	53.5
BEND135	MLOW_MS	2.01	33,526	27,887	0.45	46.8

34 | Page

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
	MLOW_SS	3.17	19,644	18,131	0.30	19.6
	MUPP_MS	40.82	18,724	48,315	0.29	37.5
BEND146	M_DSHW	0.85	480	7,400	0.54	15.0
	M_MS	29.59	23,648	30,792	0.41	22.8
	M_SS	2.02	1,300	17,466	0.09	12.5
	MUPP_MS	3.08	6,070	39,436	0.24	13.6
BEND147	M_DSHW	2.98	3,277	27,621	0.35	18.7
	M_MS	32.26	17,100	34,702	0.56	21.4
	M_SS	1.22	6,342	117,172	1.50	119.3
BEND148	M_MS	3.33	14,350	34,023	3.71	86.9
BEND149	B_MS	13.15	16,216	43,803	0.66	61.3
	K_HWSZ	1.19	6,788	14,229	0.21	33.3
	M_MS	36.41	20,242	41,341	0.97	65.6
	M_SS	0.91	11,200	6,400	0.01	60.0
BEND150	B_MS	20.36	21,734	29,709	0.79	40.8
BEND153	B_DSFW	3.65	8,602	84,514	7.14	88.3
	B_DSHW	3.92	3,027	15,149	1.60	19.5
	B_MS	20.92	11,033	25,301	1.04	60.8
	BL_DSFW	4.90	6,305	32,034	4.36	37.5
BEND156	A_SSFW	2.41	3,555	18,069	1.22	10.6
	B_DSFW	0.40	14,500	2,000	0.20	5.0
	B_MS	6.72	37,918	4,606	0.42	14.1
BEND163	A_MS	12.39	38,199	34,247	0.91	24.5
	A_SSFW	0.54	325	250	0.04	0.5
	A_SSHW	0.96	6,194	22,059	1.56	19.0
BEND174	A_MS	16.64	19,694	16,119	1.01	18.8
	A_SSHW	4.22	246	3,800	2.80	24.6
	B_MS	17.54	25,369	55,191	1.49	40.4
	J_MS	30.50	20,168	31,198	0.95	33.9
	K_DSFW	1.99	590	1,700	0.04	2.0
	K_MS	39.03	12,841	46,588	0.93	44.0
BEND175	A_MS	5.61	22,375	57,741	2.18	54.8
	A_SSFW	5.94	6,045	20,142	1.24	20.9
BEND176	A_SSFW	4.57	2,634	1,536	0.12	1.8
BEND240	B_DSFW	0.99	17,200	22,600	1.08	34.0
	B_DSHW	0.99	7,400	47,300	3.40	72.0
	B_LOW	5.99	34,217	41,500	0.51	44.0
	B_MS	3.98	14,625	21,600	0.56	28.8
	BL_DSFW	1.00	14,400	41,000	0.46	35.0
	BL_DSHW	6.98	3,000	13,886	0.44	20.4
	M_MS	40.98	9,062	29,225	0.95	30.6
	M_SS	2.00	12,150	3,100	0.32	6.0
BEND241	B_MS	137.79	1,247	2,676	0.03	2.4
	M_MS	35.94	14,914	45,333	1.84	48.8
	M_SS	1.00	12,600	24,500	2.56	38.0
BEND242	B_MS	14.77	15,664	24,126	0.90	28.8
	J_MS	29.69	20,523	23,772	0.25	21.6
	K_MS	19.69	7,340	24,303	0.19	23.0
	M_MS	15.35	24,360	59,265	0.49	52.1
	M_SS	7.43	11,181	2,413	0.65	9.4
BEND243	B_MS	19.35	12,651	27,834	0.26	30.8
	J_MS	16.88	8,365	15,362	0.44	17.3
	K_MS	26.33	13,361	24,179	0.58	41.1
	M_MS	19.38	38,417	57,622	0.78	28.8
BEND244	B_MS	18.12	9,531	29,555	0.63	41.5
	J_MS	5.03	25,016	8,625	0.96	36.8
	K_DSFW	2.85	2,367	8,067	0.16	8.0
	K_MS	27.51	8,435	45,457	1.74	45.1
BEND245	B_MS	9.41	25,773	37,298	1.00	51.4
	K_HWSZ	77.79	511	1,258	0.02	1.5
	M_MS	45.72	6,641	38,536	0.56	38.3
	M_SS	3.87	7,600	41,754	0.22	33.4
BEND246	B_MS	20.61	9,391	27,887	0.46	27.8
	K_DSFW	2.00	6,850	55,800	8.90	59.5
	K_MS	78.77	3,943	20,641	0.40	19.7
	M_MS	8.38	19,585	87,224	0.78	46.5
BEND247	B_DSFW	0.97	5,800	3,200	0.46	38.0
	B_DSHW	98.99	91	327	0.01	0.4
	B_LOW	5.74	31,846	33,795	0.40	43.2
	B_MS	4.14	9,511	29,243	0.46	27.8
	BL_DSFW	2.92	5,300	24,267	0.35	21.0
	BL_DSHW	22.47	238	148	0.01	0.7

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
	M_DSHW	28.43	911	3,022	0.14	4.5
	M_MS	14.74	15,420	55,740	2.41	76.2
	M_SS	1.97	5,600	25,600	0.97	13.0
	SHR_ZONE	2.55	8,539	23,483	0.98	42.4
BEND248	B_DSHW	2.00	4,700	28,000	0.43	11.5
	B_LOW	1.00	40,500	85,000	3.88	88.0
	B_MS	2.99	18,400	27,333	0.55	25.7
	BL_DSHW	43.80	91	237	0.01	0.5
	M_MS	32.45	35,707	32,596	0.96	26.7
	M_SS	1.19	3,200	7,800	3.27	10.0
BEND249	B_DSFW	1.67	14,255	15,935	1.27	45.3
	B_DSHW	2.26	4,824	24,517	0.38	27.1
	B_MS	3.45	15,047	30,173	0.71	30.9
	K_HWSZ	94.09	783	1,216	0.02	1.6
	M_MS	23.85	27,069	40,601	0.50	17.1
	M_SS	0.60	27,400	10,000	4.00	24.0
BEND250	B_MS	19.61	9,120	29,972	0.92	31.4
	J_MS	11.38	11,721	12,721	1.42	30.9
	K_DSFW	1.85	1,622	10,389	0.23	10.7
	K_MS	35.03	7,724	34,713	0.86	32.3
	M_MS	8.28	49,715	66,001	0.56	48.7
	M_SS	0.49	9,700	8,700	1.57	19.0
BEND251	B_DSHW	1.98	2,575	10,500	0.37	22.5
	B_LOW	5.34	25,121	78,751	1.63	79.1
	B_MS	4.25	18,703	27,048	0.31	24.9
	BL_DSFW	1.68	9,458	22,891	0.36	19.9
	BL_DSHW	47.43	6	38	0.00	0.0
	K_HWSZ	0.40	29,900	22,900	0.79	31.0
	M_MS	32.94	33,893	27,875	1.69	39.2
	SHR_ZONE	4.86	9,624	24,403	0.37	25.3
BEND252	B_DSHW	104.26	230	637	0.05	1.3
	B_LOW	3.80	16,637	22,034	0.27	32.8
	B_MS	29.94	15,342	15,485	0.63	33.3
	BL_DSFW	1.39	8,713	50,886	1.27	55.0
BEND253	B_MS	17.57	18,311	48,676	1.04	46.4
	K_DSFW	36.34	15	368	0.03	0.6
	K_HWSZ	83.02	256	608	0.01	0.8
	M_MS	21.61	30,833	67,661	0.61	25.1
	M_SS	0.79	3,600	4,000	0.63	2.0
BEND254	B_DSHW	151.81	2	44	0.01	0.0
	B_MS	22.99	10,767	23,645	0.58	30.2
	K_DSFW	3.00	2,832	8,419	0.60	16.2
	K_MS	23.29	9,886	33,239	1.05	47.3
	KHW_MS	0.70	1,900	23,600	0.85	38.0
	M_MS	10.79	51,486	42,797	1.49	45.7
	M_SS	6.00	10,783	18,717	0.32	14.7
BEND275	B_DSHW	104.47	36	90	0.00	0.1
	B_MS	8.99	16,418	23,317	0.34	26.4
	M_MS	33.26	25,945	33,273	5.21	36.2
	SHR_ZONE	2.60	3,049	9,501	1.82	26.0
BEND276	M_MS	39.64	21,199	28,605	1.24	32.4
	M_SS	0.97	800	2,000	0.12	4.0
BEND277	M_MS	221.20	4,488	2,011	0.12	2.4
	M_SS	7.95	13,907	64,972	2.65	54.7
BEND278	M_DSHW	193.94	332	1,219	0.01	0.6
	M_MS	22.69	20,059	37,913	0.37	24.3
	M_SS	5.38	4,648	54,156	6.15	118.5
BEND279	M_DSHW	3.47	3,158	44,816	1.62	60.0
	M_MS	39.91	20,159	50,123	0.78	38.0
	M_SS	0.77	3,000	21,000	7.80	93.0
BEND281	A_MS	20.38	18,934	59,516	1.62	51.3
	A_SSFW	0.94	7,900	600	0.10	2.0
	A_SSHW	1.87	3,900	17,000	5.44	52.5
BEND282	A_MS	15.26	21,812	30,636	1.97	47.9
	A_SSFW	4.50	8,040	980	0.27	4.4
	A_SSHW	6.29	757	12,957	3.57	25.0
BERD0010	M_MS	31.87	18,606	37,533	0.69	31.1
	M_SS	0.99	12,700	13,600	0.32	6.0
	MLOW_SS	7.91	6,700	13,769	0.16	9.8
BERD0011	M_MS	32.24	20,262	41,735	1.09	22.2
	M_SS	1.19	1,550	1,400	0.02	5.0
BERD0012	M_MS	23.57	13,399	69,444	0.45	34.1

Currawong						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
	M_SS	19.09	7,345	45,056	0.64	19.6
BERD0014	M_SS	1.99	18,100	1,950	0.08	12.5
	MLOW_MS	7.96	23,756	35,775	1.60	35.0
	MLOW_SS	1.99	1,425	25,100	0.43	6.5
BERD0018	M_MS	13.57	13,577	45,625	0.84	45.5
	M_SS	18.91	13,867	25,328	0.17	27.2
BERD0019	B_DSFW	2.91	1,483	16,967	0.18	13.3
	B_DSHW	4.85	15,900	18,373	0.40	36.8
	B_MS	16.92	14,356	38,437	3.74	52.7
BERD0020	B_DSHW	3.55	4,266	7,719	5.14	38.5
BERD0021	M_SS	27.51	7,524	18,311	0.07	9.0
	MLOW_SS	8.84	8,056	6,756	0.03	8.8
BERD0023	MLOW_MS	9.33	38,498	30,741	1.88	38.8
BERD0024A	MLOW_SS	1.09	19,600	21,300	10.00	31.0
	M_SS	8.15	8,634	14,753	0.28	17.0
	MLOW_MS	15.00	17,449	41,798	0.65	40.9
BERD0026	MLOW_SS	0.98	25	250	0.01	2.0
	M_MS	11.57	15,778	92,743	7.81	132.9
BERD0027	M_SS	0.99	1,747	34,899	0.77	13.8
	M_SS	4.78	9,848	13,667	0.43	20.2
	MLOW_MS	5.91	27,314	66,826	1.14	55.1

Wilga						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
08WGDD002	DSFW	5.32	2,152	14,517	0.22	9.8
	DSHW	1.08	2,220	16,096	0.21	13.0
	MSM	5.41	13,888	47,179	1.05	29.8
08WGDD004	DSFW	1.41	3,303	10,520	0.04	2.3
	MSM	28.23	38,177	33,232	0.65	22.0
08WGDD005	DSHW	0.50	5,644	62,928	0.50	15.0
	MSM	19.51	23,619	80,552	0.40	26.1
08WGDD006	SS	5.66	82,227	11,580	0.06	14.5
08WGDD007	MSM	0.92	62,988	1,487	0.02	9.9
	SS	2.29	12,431	387	0.01	2.9
08WGDD008	DSFW	1.07	12,291	13,227	0.20	18.7
	DSHW	0.65	12,350	1,186	0.39	3.0
	MSM	11.60	39,290	34,385	0.25	29.2
08WGDD009	DSFW	1.09	2,029	8,432	0.06	4.0
	DSHW	5.52	493	16,250	0.22	6.3
	MSM	15.09	11,859	94,079	0.57	35.2
08WGDD010	SS	15.20	15,494	24,394	0.14	27.1
08WGDD011	SS	25.00	29,547	15,410	0.21	30.5
10HMS004	SS	21.13	26,007	11,412	0.20	25.4
10HMS005	SS	9.55	58,768	8,123	0.19	26.1
10HMS006	SS	4.46	5,874	2,758	0.05	9.6
11WGDD001	DSFW	1.67	2,558	2,817	0.18	12.3
	DSHW	2.36	8,244	9,682	0.61	17.2
	MSM	28.78	23,175	55,167	0.98	39.3
11WGDD002	DSFW	1.08	7,001	23,950	0.47	21.4
	MSM	26.30	22,820	70,116	0.67	41.1
11WGDD003	DSFW	0.58	59,437	32,089	0.72	31.0
	DSHW	0.68	5,958	36,342	0.71	30.0
	MSM	43.71	26,904	50,317	0.56	28.3
11WGDD005	DSHW	9.07	933	1,874	0.11	2.3
	MSM	1.63	10,407	21,230	0.75	19.5
11WGDD007	SS	6.33	46,256	3,670	0.04	10.0
11WGDD008	SS	3.00	53,631	2,255	0.04	10.7
11WGDD009	SS	9.47	11,156	15,332	0.21	13.4
11WGDD010	SS	23.23	34,023	17,558	0.09	28.9
11WGDD011	SS	26.74	10,652	5,200	0.02	10.0
12WGDD001	SS	1.39	14,191	1,713	0.00	10.6
12WGDD002	SS	2.73	15,437	2,276	0.01	10.5
12WGDD003	SS	3.36	30,734	4,410	0.13	21.0
12WGDD004	SS	5.25	10,160	1,481	0.05	7.0
12WGDD006	SS	8.45	4,980	957	0.03	2.1
12WGDD007	SS	14.07	12,161	4,606	0.04	8.8
12WGDD008	SS	3.15	14,813	3,139	0.04	19.2
12WGDD009	SS	21.61	4,993	1,694	0.03	4.1
12WGDD010	SS	17.87	2,661	963	0.07	2.1
12WGDD011	SS	9.18	13,365	3,929	0.06	20.0

Wilga						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
12WGDD012	SS	9.47	16,011	9,618	0.06	15.2
12WGDD013	SS	20.34	19,704	20,388	0.19	25.5
12WGDD014	SS	3.42	4,180	4,535	0.05	5.1
12WGDD015	MSM	6.36	155,476	5,354	0.10	29.5
12WGDD016	DSHW	3.99	65,492	1,994	0.63	10.7
	MSM	1.93	68,925	2,217	3.76	9.7
12WGDD017	DSHW	2.46	49,200	11,014	0.16	32.3
	MSM	0.31	11,789	778	0.00	3.0
	SS	3.08	29,782	3,900	0.01	9.5
12WGDD018	SS	36.46	30,717	17,897	0.29	41.4
12WGDD019	SS	43.77	16,082	18,779	0.10	28.5
12WGDD020	SS	52.56	34,695	15,024	0.11	34.5
12WGDD021	SS	26.67	50,198	20,559	0.11	41.4
12WGDD022	SS	20.81	27,650	13,674	0.12	30.3
12WGDD025	DSHW	4.66	54,375	4,264	2.39	21.8
	MSM	17.66	105,325	8,697	0.56	30.7
12WGDD026	DSHW	2.49	12,819	8,410	0.46	8.7
	MSM	0.13	17,365	6,379	0.41	12.6
12WGDD027	DSHW	2.43	3,072	13,064	0.49	6.6
	MSM	27.95	36,217	59,037	0.61	34.4
12WGDD028	DSHW	4.33	156	4,795	0.05	0.9
	MSM	34.05	8,422	59,184	0.51	21.6
12WGDD029	MSM	41.00	43,591	51,399	0.70	32.6
12WGDD030	DSHW	0.68	3,023	14,705	0.36	24.0
	MSM	34.89	9,767	59,562	0.48	23.5
12WGDD031	DSHW	1.28	6,309	70,909	0.93	56.3
	MSM	29.65	3,068	38,865	0.39	19.5
12WGDD032	MSM	46.65	23,987	57,675	0.45	29.8
21WGDD001	DSFW	2.27	6,986	36,494	0.56	30.5
	MSM	3.70	26,007	50,769	0.82	39.5
21WGDD002	DSFW	0.65	4,302	18,580	0.19	9.9
	MSM	37.02	18,767	52,442	0.70	36.4
21WGDD003	DSHW	0.93	25	93	0.01	0.3
21WGDD004	DSFW	6.25	187	358	0.00	0.3
	DSHW	4.61	8,410	16,508	1.60	71.5
	MSM	22.21	35,196	66,830	0.50	44.1
21WGDD005	DSHW	0.74	270	1,342	0.01	0.3
	MSM	29.55	11,495	68,688	0.49	31.0
21WGDD006	DSHW	0.72	10,685	7,058	0.07	6.2
	MSM	15.43	20,941	68,161	0.45	32.5
21WGDD007	MSM	4.02	8,530	34,019	0.23	20.1
21WGDD008	DSHW	0.49	2,217	14,429	0.14	17.6
	MSM	8.01	9,265	63,563	0.50	35.3
BEDD0015	DSFW	6.01	5,280	16,691	0.12	8.6
	DSHW	1.43	4,417	10,800	0.27	8.7
	MSM	3.05	21,750	50,191	1.27	33.6
BEDD0016	DSFW	0.49	8,700	45,400	0.39	26.0
	DSHW	1.75	6,995	34,551	0.24	12.5
	MSM	6.50	14,557	49,432	0.86	33.0
BEND017	MSM	25.11	43,509	71,971	0.29	31.4
BEND018	DSFW	0.57	5,250	2,050	0.01	3.0
	DSHW	5.76	3,352	4,703	0.16	4.9
	MSM	16.06	99,011	48,122	0.17	37.8
BEND019	DSHW	2.00	9,349	16,817	0.06	10.0
	MSM	5.35	98,525	10,646	0.07	45.1
BEND020	DSHW	2.47	4,658	37,035	0.72	31.9
	MSM	32.76	15,637	97,918	0.65	45.7
BEND021	SS	13.23	31,335	8,116	0.22	22.1
BEND023	DSHW	0.98	6,494	33,333	0.29	10.0
	MSM	21.12	40,013	37,516	0.55	22.3
BEND025	DSFW	0.98	6,100	33,000	0.20	17.0
	MSM	10.52	21,917	51,827	0.48	35.5
BEND026	MSM	2.04	48,555	136,962	0.15	23.6
BEND029	SS	23.64	29,400	4,731	0.04	14.3
BEND032	SS	6.13	8,210	3,243	0.08	9.9
BEND035	SS	0.96	19,811	2,587	0.09	25.5
BEND037	SS	5.57	8,753	4,927	0.07	9.3
BEND041	DSFW	0.60	28,000	74,000	0.10	18.0
	DSHW	1.69	21,500	13,700	0.15	20.0
	MSM	5.91	21,041	56,520	0.12	33.5
BEND042	SS	8.52	8,090	199	0.02	4.9
BEND044	MSM	4.77	20,954	158,025	0.34	19.4

Wilga						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
BEND046	SS	10.80	18,726	4,362	0.10	29.7
BEND068	DSFW	1.48	11,629	39,614	0.38	23.0
	DSHW	3.35	623	16,148	2.14	24.9
	MSM	23.68	28,986	175,474	0.64	56.1
BEND104	DSHW	5.53	5,161	5,369	0.25	6.7
	MSM	19.48	21,145	55,631	0.64	30.8
BEND105	MSM	13.09	79,712	42,718	0.57	40.2
BEND106	MSM	25.03	60,360	31,915	0.44	31.1
BEND107	DSHW	1.82	5,511	43,629	1.96	23.6
	MSM	13.73	17,288	62,308	0.40	22.5
BEND109	SS	1.76	66,591	2,183	0.04	12.6
BEND110	MSM	12.23	113,251	38,890	0.16	31.9
BEND111	SS	12.82	27,449	2,082	0.04	8.0
BEND112	DSHW	117.09	18	80	0.00	0.0
	MSM	10.85	19,369	72,117	0.46	37.5
BEND113	SS	6.77	10,008	933	0.05	5.4
BEND114	SS	18.68	19,387	4,051	0.13	30.3
BEND115	SS	0.45	7,000	1,200	0.03	6.0
BEND116	DSHW	123.68	0	10	0.00	0.0
	MSM	23.60	17,446	39,050	1.13	36.2
BEND118	DSFW	0.48	286,000	25,500	0.25	65.0
	MSM	3.60	137,659	31,386	0.58	62.0
BEND119	SS	84.23	44	5	0.00	0.0
BEND121	SS	8.40	12,674	4,426	0.04	14.7
BEND122	SS	100.62	23,211	5,179	0.14	14.5
BEND124	DSHW	90.72	115	115	0.00	0.0
	MSM	26.69	24,047	46,695	0.42	17.3
BEND136	SS	46.48	5,903	137	0.01	0.9
BEND137	SS	8.04	21,226	62,978	0.31	10.5
BEND138	SS	10.39	52,009	6,555	0.04	11.4
BEND139	MSM	6.18	25,900	175,735	0.19	26.7
BEND143	SS	5.97	13,531	4,458	0.09	22.9
BEND152	MSM	10.05	40,676	29,170	0.35	46.6
BEND159	DSFW	6.92	9,070	31,795	0.63	25.5
	MSM	17.69	22,410	70,190	1.79	50.7
BEND200	DSHW	44.07	212	221	0.00	0.1
	MSM	14.48	23,865	85,962	0.00	41.3
BEND201	MSM	21.27	45,765	43,652	0.00	31.1
BEND202	DSHW	34.80	105	608	0.00	0.4
	MSM	31.77	25,246	48,645	0.00	23.5
BEND203	DSHW	1.65	5,714	46,933	0.00	58.6
	MSM	29.94	20,313	88,287	0.00	46.4
BEND204	MSM	25.12	13,664	99,679	0.00	48.0
BEND205	MSM	12.18	22,670	98,643	0.00	20.8
BEND206	MSM	16.47	40,778	43,025	0.00	32.6
BEND207	MSM	24.54	46,280	36,472	0.00	25.7
BEND208	DSFW	1.75	4,637	6,092	0.00	5.6
	MSM	25.80	21,273	49,704	0.00	25.4
BEND209	DSFW	0.84	3,000	18,200	0.00	1.0
	MSM	36.30	14,668	89,249	0.00	40.8
BEND210	MSM	21.66	64,200	25,728	0.00	36.3
BEND211	DSHW	15.96	1,653	11,932	0.00	20.0
	MSM	22.34	14,319	60,777	0.00	44.7
BEND212	MSM	29.99	7,623	71,036	0.00	30.6
BEND213	MSM	23.66	10,280	58,787	0.00	27.6
BEND214	DSHW	1.97	7,754	120,418	0.00	71.2
	MSM	24.30	60,843	53,907	0.00	34.8
BEND215	DSFW	0.41	2,450	19,700	0.00	9.0
	DSHW	7.66	16,945	19,038	0.00	22.6
	MSM	7.18	118,744	52,622	0.00	49.2
BEND216	DSFW	1.89	11,140	86,566	0.00	15.1
	DSHW	3.03	4,320	34,860	0.00	45.2
	MSM	30.30	11,625	50,574	0.00	30.0
BEND217	MSM	55.58	7,094	46,655	0.00	23.6
BEND218	MSM	32.50	33,379	46,893	0.00	32.1
BEND219	DSHW	1.47	2,344	20,850	0.00	13.3
	MSM	27.56	34,611	45,417	0.00	30.1
BEND220	MSM	18.13	16,705	56,406	0.00	33.6
BEND221	DSFW	0.88	15,366	44,269	0.00	8.8
	DSHW	13.57	2,071	12,360	0.00	35.1
	MSM	22.91	35,638	54,508	0.00	37.9
BEND222	MSM	53.76	6,640	29,502	0.00	23.2

Wilga						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
BEND223	DSFW	2.26	42,760	90,240	0.00	23.0
	DSHW	28.21	577	3,374	0.00	3.8
	MSM	34.50	22,400	47,586	0.00	27.7
BEND224	DSHW	65.56	21	323	0.00	0.0
	MSM	2.58	25,725	137,259	0.00	41.5
BEND225	DSFW	0.58	3,200	4,600	0.00	4.0
	MSM	6.22	72,880	39,857	0.00	35.5
BEND226	SS	13.86	45,188	4,194	0.00	17.2
BEND227	SS	15.95	34,190	4,586	0.00	12.4
BEND228	SS	56.66	1,726	1,046	0.00	1.1
BEND230	MSM	1.00	96,500	72,400	0.00	29.0
	SS	4.99	87,287	10,850	0.00	26.3
BEND231	SS	60.22	2,328	711	0.00	1.5
BEND232	SS	4.14	31,560	8,620	0.00	25.0
BEND234	DSHW	55.33	565	122	0.00	0.3
	MSM	3.19	129,961	2,389	0.00	37.6
BEND235	SS	16.51	4,751	2,394	0.00	6.6
BEND236	SS	8.00	391	4,200	0.00	1.3
BEND237	SS	61.63	1,867	491	0.00	2.2
BEND238	SS	2.50	31,795	5,449	0.00	46.7
BEND239	SS	20.84	5,730	1,268	0.00	3.9
BEND255	MSM	11.40	17,311	83,067	0.00	45.0
BEND256	DSFW	0.40	2,000	11,200	0.00	2.0
	DSHW	33.47	480	431	0.00	0.2
	MSM	5.19	24,816	76,355	0.00	34.1
BEND257	MSM	11.36	22,267	64,961	0.00	31.7
BEND258A	DSHW	1.54	14,700	3,500	0.00	1.3
	MSM	5.39	10,343	4,043	0.00	4.0
	SS	2.33	2,317	38,300	0.00	10.3
BEND259	DSFW	3.81	10,250	12,725	0.00	4.8
	DSHW	2.57	21,645	5,856	0.00	5.1
	MSM	5.72	26,817	38,733	0.00	13.5
BEND260	DSFW	1.00	5,100	34,300	0.00	9.4
	DSHW	9.30	11,081	3,834	0.00	0.9
	MSM	19.19	37,970	108,745	0.00	67.2
BEND261	MSM	29.48	11,667	16,261	0.00	10.3
BEND262A	SS	9.84	55,047	12,307	0.00	24.5
BEND263	SS	25.46	459	109	0.00	0.4
BEND266	DSHW	15.62	89	1,089	0.00	1.9
	MSM	25.53	29,662	136,931	0.00	64.3
BEND267	MSM	41.27	14,944	63,773	0.71	40.1
BEND268	DSFW	0.69	3,100	10,100	0.00	2.0
	MSM	80.41	6,655	28,934	0.00	12.6
BEND269	DSHW	43.26	62	329	0.00	0.5
	MSM	33.17	12,595	81,000	0.00	44.7
BEND270	MSM	22.18	13,066	86,774	0.00	43.0
BEND271	MSM	16.79	11,894	75,153	0.00	41.7
BEND272	DSHW	65.24	100	404	0.00	0.6
	MSM	31.11	14,868	62,588	0.00	37.7
BEND273	DSHW	55.40	37	200	0.00	0.1
	MSM	31.78	14,831	70,147	0.00	38.9
BEND274	DSFW	0.78	7,500	25,800	0.00	65.0
	MSM	71.40	3,702	18,102	0.00	12.5
BEND283	SS	55.64	7,062	286	0.00	3.0
BEND284	SS	44.37	1,109	414	0.01	1.0
BEND285A	MSM	1.59	23,102	111,499	0.10	19.5
BEND286	SS	2.17	25,499	7,196	0.10	5.0
BEND287	SS	1.55	39,816	463	0.00	9.9
BEND288	SS	33.15	2,603	85	0.00	0.4
BEND289	SS	3.01	107,127	3,467	0.00	17.6
BEND295	DSHW	8.12	1,580	103	0.94	28.7
	MSM	11.11	44,755	66,331	0.59	30.4
BEND296	MSM	5.98	50,317	54,696	0.02	11.2
BEND297	MSM	24.80	2,174	10,367	0.06	6.2
BERD0002	MSM	150.48	3,766	17,613	0.17	10.8
BERD0003	MSM	6.01	27,016	76,033	0.33	35.9
BERD0004	MSM	9.51	13,469	78,985	0.44	35.0
BERD0005	DSHW	0.99	6,334	35,127	0.54	8.4
	MSM	5.95	13,275	101,383	0.46	19.7
BERD0006	MSM	28.06	15,116	52,866	0.58	31.6
BERD0007	MSM	11.99	27,059	27,689	0.46	17.4
BERD0008	MSM	7.05	36,638	59,246	0.71	24.4

Wilga						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
BERD0009A	DSFW	2.40	198	1,146	0.02	0.5
	MSM	6.68	13,568	64,253	0.77	42.8
UW002	DSHW	0.66	1,300	15,000	0.14	30.0
	MSM	8.63	42,293	117,961	0.19	52.4
UW003	DSHW	9.09	7,424	17,268	0.04	26.2
	MSM	8.81	45,192	60,348	0.15	35.1
UW004	DSHW	0.92	7,600	45,200	0.08	30.0
	MSM	13.67	85,529	69,438	0.12	46.9
UW005	DSHW	2.59	5,055	65,990	0.14	26.7
	MSM	5.59	50,946	84,792	0.13	38.2
UW006	DSHW	1.79	14,384	72,896	0.12	28.5
	MSM	9.97	151,446	8,623	0.07	56.9
UW007	DSFW	1.01	3,600	7,800	0.01	10.0
	DSHW	2.44	16,778	18,354	0.04	29.1
	MSM	14.50	44,122	52,275	0.05	29.7
UW008	DSFW	0.83	6,700	5,200	0.01	30.0
	DSHW	10.50	13,251	8,206	0.04	28.5
	MSM	5.14	68,311	98,605	0.22	48.8
UW009	DSHW	1.03	8,125	19,518	1.00	66.3
	MSM	16.37	84,042	54,468	0.07	45.1
UW010	DSFW	0.51	9,400	2,900	0.01	15.0
	MSM	11.33	91,786	19,936	0.05	36.0
UW011	DSHW	0.46	13,191	16,015	0.11	5.9
	MSM	11.28	79,834	15,288	0.06	21.8
UW012	DSHW	0.54	1,277	23,421	0.22	17.5
	MSM	10.43	85,922	24,600	0.10	30.6
UW013	DSHW	2.15	7,994	26,553	0.07	12.5
	MSM	11.17	48,834	64,707	0.14	31.7
UW014	MSM	16.93	16,094	96,478	0.50	35.7
UW015	DSHW	5.89	8,584	20,407	0.07	11.4
	MSM	12.11	83,484	48,298	0.21	44.1
UW016	DSHW	4.74	14,816	14,083	0.10	29.4
	MSM	11.37	88,423	43,633	0.34	56.1
UW017	DSFW	0.24	6,700	5,400	0.02	15.0
	DSHW	1.32	4,365	30,898	0.06	17.5
	MSM	9.42	89,489	29,027	0.16	38.7
UW018	DSHW	0.44	720	16,800	0.19	20.0
	MSM	27.35	24,595	125,623	0.28	53.0
UW019	DSFW	1.57	49,993	20,413	3.18	24.4
	MSM	26.13	57,287	55,785	0.38	41.1
	MSM	18.28	87,124	24,780	0.30	39.3
UW020A	MSM	23.94	87,510	30,801	0.29	50.4
UW021	MSM	22.30	90,904	35,470	1.78	42.4
UW022	MSM	16.31	56,616	40,814	0.33	28.6
UW023	DSHW	1.22	8,717	30,172	0.61	31.1
	MSM	18.01	13,512	72,451	0.33	36.1
UW024	DSHW	2.86	2,375	12,739	0.06	33.3
	MSM	16.62	6,812	70,846	0.21	44.4
UW025	DSHW	1.84	10,682	348,101	0.44	130.0
	MSM	11.86	7,230	112,987	0.16	54.1
UW026	MSM	11.36	8,200	80,108	0.34	46.4
UW027	MSM	11.55	6,566	108,082	0.49	54.1
UW028	MSM	11.29	7,309	135,179	0.53	53.4
UW029	MSM	11.28	15,516	108,280	0.44	28.2
UW030	DSHW	6.36	1,891	12,749	0.18	28.1
	MSM	7.85	8,906	120,848	0.57	42.9
UW031	DSHW	1.35	1,239	38,018	0.44	41.0
	MSM	6.44	5,948	102,170	0.54	38.7
UW032	MSM	3.16	23,331	90,192	0.37	37.1
UW033	DSHW	5.50	133	1,872	0.02	5.9
	MSM	5.07	11,491	111,161	0.36	34.9
UW034	DSHW	0.55	3,600	9,600	0.01	15.0
	MSM	10.52	14,446	74,135	0.44	28.8
UW035	DSFW	0.72	7,900	6,700	0.01	5.0
	MSM	6.12	21,043	68,117	0.59	29.8
UW036	DSHW	3.35	1,576	26,302	0.08	26.5
	MSM	8.47	126,120	13,738	0.03	33.6
UW036A	DSFW	0.56	8,700	4,750	0.02	10.0
	DSHW	3.68	2,531	17,590	0.04	14.4
	MSM	9.04	152,295	12,467	0.05	46.1
UW037	DSHW	2.41	79,110	11,950	0.06	33.9
	MSM	2.04	97,629	22,217	0.04	26.8

41 | P a g e

Wilga						
HOLEID	DOMAIN	TRUE_THICK	CU_PPM	ZN_PPM	AU_PPM	AG_PPM
UW038	DSHW	2.57	5,220	31,710	0.82	36.9
	MSM	9.74	99,873	66,258	0.09	40.6
UWG1	MSM	3.61	5,141	44,870	0.33	30.1
UWG2	MSM	4.28	4,067	36,075	0.47	36.7
UWG3	MSM	5.84	4,494	63,596	0.41	35.1
WBDD007	SS	52.31	5,806	427	0.00	1.8

${ }^{1}$ All reported grades are length-weighted mean grades.

APPENDIX C: JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	- The Mineral Resources at Currawong and Wilga have been defined using conventional diamond core drilling (DD) both from surface and underground sites. - Some RC holes have been drilled by past explorers, but the data from these holes has only been used for geological information, assay information has not been used in the Mineral Resource estimate. - Refer to the subsections below for details relating to this drilling and sampling.
Drilling techniques	- The details for the drilling of two Stockman deposits (Currawong and Wilga) are: - Currawong: 237 holes for a total of $67,785 \mathrm{~m}$ of drilling. - Wilga: 277 holes for $28,674 \mathrm{~m}$ of drilling, including 23 holes for $2,528 \mathrm{~m}$ drilled from underground sites. - The drill hole database dates to 1976 with: - Western Mining Corporation (WMC) drilling 107 holes between 1976 and 1984 to collect 47.6 mm diameter (NQ) cores, and 36.4 mm diameter (BQ) cores from deeper tails. - Macquarie Resources Ltd drilled 78 holes between 1986 and 1990 collecting $63.5 \mathrm{~mm}(\mathrm{HQ})$ cores with NQ tails. - Macquarie also drilled 40 holes from underground sites collecting 35.6 mm diameter (LTK46) cores. - Denehurst Ltd drilled 100 holes with a range of core diameters including LTK45, 50.6 mm diameter (NQ2), BQ, 36.6mm diameter (BX) and $B Q$. - Austminex NL drilled 26 holes at Currawong in 2000 and 2001, sometimes using RC pre-collars. The core collected was triple tube 61.1 mm diameter (HQ3) or 45.0 mm diameter (NQ3) tails. Jabiru Metals Ltd (JML) commenced drilling in 2008 using 85 mm diameter (PQ) core for top-of holes, then HQ tails. Wedge holes were all drilled using a NQ2 core diameter. - Independence Group NL (IGO) completed a further drill program of 46 holes in 2011 and 2012 prior to updating the Mineral Resource, mainly NQ2 diameter for definition work and $H Q$ for metallurgical sample collection and geotechnical logging and testing. - ROM/Aeris drilled an additional 16 drill holes at NQ2 diameter for definition work and HQ for metallurgical sample collection and geotechnical logging and testing. - IGO cores were oriented using electronic tools (Reflex Ace).
Drill sample recovery	- During drilling, rod counts used to verify the lengths drilled and downhole depths. - Post drilling down hole interval accuracy was monitored through reconstruction of the core into a continuous length and verification against the core blocks. One metre intervals were marked on the core. - Core recovery in all drill programs was quantified as percentage of the core length recovered compared to the drill hole advance length. There were no core recovery issues during the drilling apart form a small area within Wilga with poor recovery due to high (friable) chalcocite concentrates, and this small volume was classified as Inferred Mineral Resource due to the local poor recovery.

	- Core recovery is reported to be high from all drilling, with minimal losses except in highly fractured ground that lay outside of the mineralisation. - Some core was lost where holes intersected underground workings. - There were no relationships between sample recovery and grades with no sample biases due to the preferential loss or gain core.
Logging	- RC cuttings and DD cores have been logged geologically and geotechnically, with reference to standard logging schemes, to levels of detail that support Mineral Resource estimation, Ore Reserve estimation and metallurgical studies. - Qualitative logging for both RC and DD includes codes for lithology, oxidation (if any), veining and mineralisation. - Recent DD cores have been photographed both wet and dry, after logging had taken place, and qualitatively and structurally logged with reference to orientation measurements where available. - The total lengths of all drill holes in all deposits have been logged, with greater detail captured through zones of mineralisation and the footwall and hangingwall rocks found within 30 m of main lodes.
Sub-sampling techniques and sample preparation	- Only geological information was included from RC drilling, with no RC sample grade information and sample preparation used for Mineral Resource estimation purposes. As such, the description of RC subsampling and preparation of RC samples is immaterial. - Details of pre-IGO/JML sample preparation are not known but are expected to be consistent with industry practices in place at the time of the various drill programs. - Apart from 62 duplicates collected by Macquarie Resources, no field duplicates were collected in any of the pre-JML/IGO programs. IGO/JML Diamond Drilling Primary Sampling: - A geologist marked out DD core for sampling intervals based on geological units, with intervals ranging from 0.1 m to 1.5 m , with a target interval of 1 m . - The sample intervals were then cut in half (or sometimes quartered) longitudinally with a wet diamond blade, with the laboratory dispatch half (or quarter) collected from the same side of the core. - For the few intervals of extremely broken core, the core was sampled by hand-picking representative fragments from the broken core interval to prepare a sub sample having approximately half the sample interval mass. - Samples were collected in pre-numbered calico bags for laboratory dispatch.
	IGO/JML Laboratory DD cut-core preparation: - For JML/IGO cores: - Core samples were oven dried then crushed in a jaw-crusher with recent core crushed to a particle size distribution (PSD) <10mm. - The jaw-crush lot was then pulverised to a PSD of 85% passing 75 microns. - JML/IGO Quality controls to ensure sample representativity included: - Blanks and standards were inserted in the sample stream with routine samples. - Replicate samples were collected as $1 / 4$ core as field duplicates and pulps replicates were also collected. - Sieve testing to ensure PSD compliance of the pulps. Monitoring of quality results confirmed the sample preparation was acceptable. - No specific heterogeneity tests have been carried out, but the Competent

	Person considers that the sub sample protocols applied, and masses collected are consistent with industry standards for the style of mineralisation under consideration. ROM/Aeris - The drill crew included core blocks at every drill run interval which displayed information regarding the previous run, interval length, recovery and depth. If any core loss was experienced, this was reflected in the core recovery. Drill core was orientated where coherent orientation marks were established on the drill core. RQD measurements and core photography was completed as routine. Drill core was logged to geological boundaries. Core sampling intervals were based on geological boundaries varying between 10 cm and 1.4 m , with the majority 1 m in length. All core processing was completed at the company's core yard in Benambra. Core was cut using an Corewise PTY LTD automatic core saw. - Upon sample receipt, laboratory staff reconciled the client submission form against the submitted samples prior to placing them in sequential order onto a trolley. This information was forwarded to the office to prepare paperwork and labels in the LIMS as well as report all discrepancies noted in each delivery. - The samples are dried at 105C for a minimum of 5 hours. Core samples are crushed using an Essa JC2500 to produce a product of $<6 \mathrm{~mm}$ particle size. If the sample is $>3 \mathrm{~kg}$ it is rotary split in a Boyd crusher to generate a sample $<3 \mathrm{~kg}$ and placed in an LM5 pulveriser. All excess material from splitting is collected and stored. The pulverising stage generates an 85% passing 75 micron particle size sample. A pulp is taken from the bowl and the remainder of the sample removed and retained as a residue. Every 50th sample has an additional portion removed from the bowl and sieved at 75 um to confirm quality of product. The LM5 bowl is then vacuumed before pulverising the next sample. - Samples are then analysed by the following methods (lower detection limits in ppm): - Au by method FA25/OE04 (Ore grade Au, Fire Assay, 25g sample, ICP-OES finish). - Multi element suite analysed by 4A/OE33; Trace level of 33 elements by 4acid digest with an ICP OES finish. - Over range results on selected elements (Cu, Pb, Zn, As, S) as directed by Round Oak was completed via 4AHBr/OM.
Quality of assay data and laboratory tests	- No geophysical tools were used to determine any element concentrations estimated in the Mineral Resource. - Pre-JML/IGO pulp sub-samples were all assayed by a three or 4-acid digestion, with the redissolved digestion salts analysed by AAS or ICP methods for key elements. The 4-acid digestion is likely a total digestion, but the three-acid method may be incomplete for some elements. - JML/IGO pulp sub-samples $(0.3 \mathrm{~g})$ were assayed by a 4-acid digestion and

	analysis of the redissolved digestion salts by ICP-OES method for Cu-Pb-Zn-Fe-Ag-As. Gold was assayed by 50 g fire assay. - JML/IGO quality results found minimal cross-contamination between samples (from blanks), acceptable accuracy (from standards and umpire assays), and acceptable precision (from replicate samples). - The Competent Person considers that acceptable levels of precision and accuracy had been established and cross-contamination has been minimised for the JORC Code classifications applied. - The quality of the pre-JML/IGO data has lower confidence due to the paucity of assay quality controls, with only 17 field standards, 62 replicate sample and 84 umpire laboratory checks available.
Verification of sampling and assaying	- Massive-sulphide drill intersections are visually conspicuous in the core and as such, assay results and assaying have been readily cross-verified by geologists through re-inspection of the core or core photographs. - Drill hole sample number and logging information has been captured at source since 2008 using laptop computers with standardised database templates to ensure consistent data entry. Older drilling was captured onto paper logs, which were subsequently entered into spreadsheets and loaded into IGO's centralised database. This database was acquired by ROM and then Aeris with the Project. - Data (logs, sample dispatched, core photographs) was downloaded daily to IGO's and ROM's main acQuire database system, which is an industry recognised tool for management and storage of geoscientific data. - The system was backed up offsite daily. - Assay data was merged electronically from the laboratories into a central database, with information verified spatially in Surpac and Leapfrog software. - IGO maintained standard work procedures for all data management steps. - An assay importing protocol has been set up to ensure quality samples are checked and accepted before data can be loaded into the main database. - There have been no adjustments or scaling of assay data other than setting below detection limit values to half detection for Mineral Resource estimation work.
Location of data points	- Drill hole collars: - Older drill holes have been located by surveyors using the most precise survey equipment available at the time of survey. - The collar locations of recent underground holes have been located by a surveyor using total station survey equipment. - Recent holes drilled from surface have had the collars located using RTK GPS equipment. - Drill hole paths: - Older drill hole paths were surveyed using down hole cameras (single and multi-shot) with readings taken at $\sim 30 \mathrm{~m}$ down hole intervals. - Recent hole paths have been surveyed using down hole cameras during drilling then at the end of hole, a multi-shot camera was used to record the hole path plunge and bearing every 6 m . - The grid system for drilling and the Mineral Resource estimate is the Stockman Regional Grid (SRM) which was prepared as a two-point transformation from GDA94 Zone 56, AHD using the following control points: - \quad Point $1: 581,179.03 \mathrm{MGA}$ east $=43,855.34$ SRG east, $5,906,758.20 \mathrm{MGA}$ north $=801,015.57$ SRG north, $1,005.56$ AHD $=6,005.56$ SRG RL

	- \quad Point 2: 578,741.74 MGA east $=40,610.25$ SRG east,5,904,489.20 MGA north $=800,269.47$ SRG north,687.90 AHD $=5,687.90$ SRG RL. - This transformation results in a 30-degree counter-clockwise rotation from GDA north. - The Stockman topography DTM was prepared by a contractor as part of a 2008 aeromagnetic survey. - A 3D model of the underground mine workings was prepared from 1996 mine plans.
Data spacing and distribution	- The sample spacing over the Wilga and Currawong deposits is nominally a $25 \mathrm{mE} \times 25 \mathrm{mY}$ spacing, with a minimum hole spacing of $\sim 10 \mathrm{~m}$ and maximum of $\sim 70 \mathrm{~m}$. - In the stringer domain lenses, the spacing ranges from a $25 \mathrm{mE} \times 25 \mathrm{mY}$ spacing to a $50 \mathrm{mE} \times 50 \mathrm{mY}$ spacing. - Down-hole sample intervals range from 0.1 m to 1.5 m with 1 m compositing applied for Mineral Resource estimation work. - The Competent Person considers that these data spacings are sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedures used, and the JORC Code classification applied.
Orientation of data in relation to geological structure	- Nearly all surface drill holes used for Mineral Resource estimation are oriented to intersect the mineralisation at a high angle and as such, a grade bias introduced by the orientation of data in relation to geological structure is unlikely. - Underground fan drilling at Wilga has some holes drilled parallel to mineralisation and as such, there is a risk of sampling bias due to orientation in these holes, but much of this local area is already mined out. - A few of the 2012 holes drilled at Wilga tested mineralisation at shallow angles as a function of drill access issues. However, the volume of Mineral Resource influenced by these holds is not considered material. - Two down-plunge (or dip) holes drilled at Currawong for metallurgical work were not used for grade estimation purposes.
Sample security	- The sample security relating to pre- JML/IGO drilling is not known but expected to be consistent with industry practices in place at the times of the respective drill programs. - For JML/IGO drilling the core handling was managed by JML/IGO with samples stored a lock core yard, with cut-core transported by road freight contractors to the assay laboratory. - On laboratory receipt, the samples were reconciled to JML/IGO dispatches and any issued resolved before assaying proceeded.
Audits or reviews	- IGO reviewed the sampling and drilling on site in 2013 and found the processes and procedures in place were acceptable for Mineral Resource estimation work. - IGO audited the main assay laboratory (Genalysis Adelaide) in 2010 and 2012. - A review of the historical procedures and data has been conducted by the Competent Person with no major errors detected that would impact the MRE.

Mineral tenement and land tenure status	- The Currawong and Wilga deposits are wholly within Victorian mining tenement MIN5523, which is held in good standing. - There are no native title claims registered over the lease, but an agreement is in place with a prior claimant that makes provision for both the prior claimant and/or other indigenous groups to assert an interest in the future. However, no significant heritage sites have been identified. - The lease is located on rugged and heavily forested crown land administered by the Department of Environment, Land, Water and Planning. - The security of tenure at the time of reporting is secure with no known impediments to obtaining a licence to operate on the mining tenement.
Exploration done by other parties	- The Stockman area was identified as being prospective for base metals, by stream sediment sampling and mapping in the early 1970s by WMC. - The Wilga deposit was discovered in drilling by a WMC/BP Minerals JV in 1977, and the Currawong deposit was discovered by drilling 1979. - The project was then explored and drilled by several companies - refer to the section on drilling techniques in Section 1. - Denehurst commenced mining of the Wilga high grade copper zones in 1992, the switched to the high-grade zinc zone, before closing the mine in 1996. Mine closure was attributed to unfavourable exchanges rates, poor metallurgical recovery, and high smelter charges. Denehurst went into receivership in 1998. - Mine-claimed ore mined from Wilga was 0.96Mt grading 6.04\% Cu and 8.68\% Zn. - Further exploration drilling was competed by other companies following closure including Austminex, JML, IGO and ROM.
Geolo	- The Stockman Wilga and Currawong polymetallic VHMS deposits (Zn-Cu-Pb-Ag-Au) occur in the Upper Silurian age Cowombat Rift in the Palaeozoic Lachlan Fold Belt of south-eastern Australia. The Cowombat Rift has undergone strong regional deformation and the Stockman deposits are both located in a remnant fault bound tectonostratigraphic block known as the Limestone Creek Graben. Both deposits (which are 3.5 km apart) are hosted by the Enano Group which locally overlies Ordovician to Silurian turbidite metasediments, with lesser basaltic and andesitic volcanic components. The Enano Group is overlain by early Devonian age welded ignimbrites of the Snowy River Volcanics and limestones of the Buchans Group. - The Wilga deposit is a stratiform massive sulphide lens in the immediate footwall to a coherent dacite. The footwall of the lens is sheared then below the shear zone is the Thorkidann Volcanics, which are barren of mineralisation. Wilda's mineralisation boundaries are sharp, and the principal sulphides are chalcopyrite, sphalerite and galena within a massive sulphide style, and stringer sulphides which is characterised by chlorite and chalcopyrite. - The Currawong deposit comprises five stacked stratiform massive sulphide lenses and other minor discontinuous massive sulphide/stringer zones, found at the of the Gibson's Folly Formation. The sulphide mineralogy is analogous to the Wilga mineralogy.
Drillhole information	- Drill hole information has been retained at site digitally on the server in the inherited SQL database, as well as physical drill core through subsequent acquisition of the project. - The Mineral Resource estimates for each deposit give the best-balanced view of all the drill hole information, nevertheless, the list of holes and the intercepts used to prepare the MRE have been provided in Appendices A and B.

Data aggregation methods	- All drill hole intercepts listed in Appendix B are length weighted averages. - Drill hole intercepts are averaged across a contiguous interval within each estimation domain. - No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	- Drill holes are designed to intersect the target horizon across strike at or near right angles. -The reported true thicknesses have assumed the mineralisation dips 40 degrees to the north (Stockman Regional Grid)
Diagrams	- Appropriate diagrams are included in the body of the report.
Balanced reporting	- The reporting is considered balanced, and all material information associated with the Mineral Resource has been disclosed.
Other substantive exploration data	- There is no other relevant substantive exploration data to report. Further work- The MRE will support ongoing mining studies, as well as continued exploration of the surrounding areas.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	Commentary
Database integrity	- Data collected prior to 2008 was captured on hard copy for transfer to the database and was subject to a fully documented, systematic and comprehensive database audit prior to being captured within an AcQuire digital database. - Since 2008, the collar positions were located using a differential GPS, or if underground, a Leica Total Station. - Between 2008 and 2017, downhole surveying was undertaken using an ORIShot digital camera at 30 m intervals, and at the end of hole, a multi-shot camera was used taking readings at 6 m intervals. The Ori-Shot surveys were used only where the multi-shot readings were unavailable. After entry on the database, the drill hole trace was reviewed spatially to check for any inconsistencies, which were subsequently corrected. The geological logging (including total core recovery and RQD) were captured digitally at point of logging. Assay data was imported from the laboratory supplied digital files. - Since 2017, downhole surveying was undertaken with a Reflex Gyro at 15 m intervals, and at the end of hole, a Reflex multi-shot camera was used taking readings at the end of each drill run. After entry in the database, the drill hole trace was reviewed spatially to check for any inconsistencies, which were subsequently corrected.

Criteria	Commentary
	- The drill hole data was supplied as an Access database. The data was exported to csv format, and then imported into Datamine binary files. The total number of records and checksum values were compared between the Access database tables and the Datamine files, with all values being the same. The data minimum, maximum and number of special values were checked, compared against the Access database, and once the values confirmed, the drill hole data was desurveyed, generating a variety of check tabulations, which did not reveal any inconsistencies. The drill hole traces were then checked spatially and no discrepancies were identified.
Site visits	- The Competent Person undertook a site visit from the 11 - 15 September 2023 to review drill core, site facilities, hardcopy records of geological data, and undertake random data verification checks. - The Competent Person was satisfied that the geological data is of sufficient quality and reliability to underpin the Mineral Resource Estimates for the Wilga and Currawong Deposits.
Geological interpretation	- There is good confidence in the interpreted external geometries of the individual domain interpretations at both Wilga and Currawong deposits. - At both deposits, the Massive Sulphide mineralisation has varying degrees of metal zonation (lower/higher grade regions). At the Wilga deposit, the historic underground channel sampling, which were used for interpretation purposes, provides good control on the internal geometry of the metal zonation and hence, there is good confidence At the Wilga deposit. At Currawong, there is similar evidence of distinct metal zonation in the larger Massive Sulphide domains. The current drill spacing provides excellent control on the external geometry of the domains, but only moderate control in the internal distribution of metal. - All available surface and underground data were used to interpret the geology and mineralisation at the Wilga deposit, the surface and underground diamond drill hole samples were used for estimation. - The Currawong deposit was informed solely by surface diamond drill holes, which were then used in estimation. - At the Wilga deposit, alternative interpretations would only be at a local scale and would have a minimal effect on the Mineral Resource. - At Currawong, alternative interpretations could have a moderate effect on the metal zonation of in the Massive Sulphide domains and the external geometry of the stringer and Disseminated Sulphide domains. - The Wilga and Currawong stringer domain interpretations were interpreted using a +AU\$30 NSR criteria to remove non-mineralised material between the stringer mineralisation. - The lithology and mineralisation style (massive/stringer/disseminated/shear), individual domain geometry and the geometry of the internal zonation were used to define the mineralisation and estimation domains. Except for antimony, testing at both Wilga and Currawong deposits demonstrated that these were discrete contacts. At both deposits, the contact analysis for antimony exhibited soft contact conditions between the mineralised domain but hard contacts between the mineralisation and non-mineralised domains.

Criteria	Commentary
	- The sulphide mineralisation style is the most significant geological factor affecting geological and grade continuity. The stringer and disseminated mineralisation at both deposits have more variability than the Massive Sulphide. However, the internal zonation observed in some of the Massive Sulphide lenses, variably impacts the grade continuity for the respective metals. Within the Massive Sulphide domains, there is a broad inverse correlation between copper and the combined lead and zinc grades, which necessitated the introduction of low/high copper and zinc domains to assist with estimating the respective grades.
Dimensions	- The Wilga deposit mineralisation commences 40 m below surface, is approximately 475 m along strike, extending 200 m vertically, with highly variable true widths ranging from $<1.0 \mathrm{~m}$ to 40 m , but with an average of 20 m . The Wilga deposit mineralisation dips at $25^{\circ}-45^{\circ}$ to the north. - The Currawong deposit mineralisation consists of 23 mineralised lenses with mineralisation commencing 65 m below surface. The Currawong deposit mineralisation has two dominant orientations: - Sixteen lenses dip between 35° and 50° towards the north and have vertical extents ranging from 48 to 260 m , averaging 150 m , and horizontal extents ranging from 85 to 435 m , with variable true widths ranging from <1.0 to 40 m , averaging 15 m . - Seven lenses dip between 40° and 60° towards the northwest, with vertical extents ranging from 20 to 120 m and horizontal extents ranging from 17 to 120 m . The true width is variable ranging from < 1.0 m to 45 m , but averaging 6.0 m .
Estimation and modelling techniques	- All modelling and estimation was completed using Datamine Studio Pro (v1.11.300). Both Wilga and Currawong deposits used a block model with a parent cell size of 10 mE by 5 mN by 2.5 mRL , which was derived from the available drill hole spacing in combination with kriging neighbourhood analysis. - As the mineralisation exhibited low coefficients of variation (CV) and skew, ordinary kriging was selected as the appropriate grade estimation technique. Composite samples on a nominally 1.0 m length were used for estimation. The need for top cuts was assessed graphically and by referencing the impact on the CV. Of the 270 domain and element combinations, only 38 (two copper, eight lead, one zinc, one silver, seventeen gold, seven arsenic and one density combination) required a top cut. - All domain boundaries except for antimony were treated as hard boundaries. For antimony, the mineralised domain boundaries were treated as soft boundaries and only the mineralised-waste boundary was treated as a hard boundary. - All estimates except antimony were estimated using the Datamine dynamic anisotropy (DA) function to control the search direction, which was orientated into the plane of the mineralisation. - All estimates used a three-pass search approach, with the first and second pass using 8 to 28 samples, and the third pass used 4 to 14 samples. - At the Wilga deposit, the Massive Sulphide and stringer domains used a primary search of 35 m by 35 m by 10 m which was doubled in the second pass and then tripled in the third pass. The two Wilga deposit disseminated domains used a primary search of 35 m by 35 m by 12.5 m , which was doubled in the second pass, and then tripled in the third pass.

Criteria	Commentary
	- For the estimation of antimony at the Wilga deposit, the search was orientated parallel to the antimony variogram, using a primary search of 50 m by 50 m by 20 m , which was doubled in the second pass and tripled in the third pass. All Wilga deposit estimates except antimony employed a restriction of 4 samples per drill hole. - At Currawong, all domains except for the Massive Sulphide low grade subdomains used a primary search of 35 m by 35 m by 7.5 m , which was doubled for the second pass. The third pass used a maximum search distance of 125 m by 125 m by 26.75 m . Domains at the Currawong deposit that were informed by consistently spaced drilling sections used a restriction of 4 samples per drill hole. Domains informed by either variably spaced and/or locally clustered drilling did not use a restriction on the number of samples per drill hole. - At Currawong, the Massive Sulphide low grade copper/zinc subdomains used a primary search of 50 m by 50 m by 7.5 m , which was doubled for the second pass the third search pass used a search distance of 178 m by 178 m by 26.75 m , with no restriction on the number of samples per drill hole. - All estimates at both deposits used block discretisation of 3 mX by 2 mY by 2 mz . - For the estimation of antimony at the Wilga deposit, the search was orientated parallel to the antimony variogram, and used a primary search of 50 m by 50 m by 20 m , which was doubled for the second and then tripled for the third search pass. - For the estimation of antimony at Currawong, the search was orientated parallel to the antimony variogram, and used a primary search distance of 150 m by 135 m by 75 m , then 225 m by 202.5 m by 112.5 m for the second pass and then 300 m by 270 m by 150 m for the third pass. - For the Mineral Resources at the Wilga deposit, the maximum distance of extrapolation is 81 m , and at Currawong it is 115 m . - Aeris prepared a check estimate of Currawong during its review of the Snowden Optiro block model. Results were inline with expectations - Allowing for the impact of drilling post 2012, the previous and current Mineral Resource estimates compared well. At both deposits, only the Massive Sulphide domain has been interpreted in 2022 with the same criteria as the previous 2012 interpretation. - Comparing the 2012 and 2022 MRE Massive Sulphide domains at a AU\$0 NSR cut-off, the relative difference for the 2022 Wilga estimate has 11% more volume and tonnes, 5% higher copper grade and a 2% higher zinc grade, but an 11% lower lead grade and a 4% lower silver grade. At Currawong, the volume and tonnage is 5% and 6% higher respectively, the copper grade is 5% higher, but lead is 14%, zinc 1% and silver 6% lower grade. - There is 2012 data that demonstrates that not all of the historical mining at the Wilga deposit has been captured by the available mining void wireframes, making comparisons against historical production of limited value. The 2022 estimate has used a 'possibly mined' void shape to deplete material from the estimate. - No assumptions were made regarding by-product recovery in the estimate. - The deleterious elements arsenic and antimony were estimated for mine planning purposes. Sulphur and iron were estimated to assist with planning for acid mine drainage if required.

Criteria	Commentary
	- Both Wilga and Currawong deposits used a block model with a parent block size of 10 mX by 5 mY by 2.5 mRL . Parent block estimation was used and both deposits have been drilled on a nominal 20 to 25 m section spacing with holes drilled at 10 to 25 m spacing. The primary search was 35 m by 35 m at both deposits. The first pass estimate at Wilga informed 77% of the estimated volume and at Currawong, 73% of the volume. - There were no assumptions regarding a selective mining unit used to inform the selection of block size. - A positive correlation between iron, sulphur and density is demonstrated in all mineralised domains. Correlation between density and the other variables was variable, ranging from good to poor depending on individual domains. - The cross-correlations between the elements are similarly variable, depending on the individual domain, hence no assumptions have been made. - The sulphide mineralisation style was used to define the respective individual domains. The Massive Sulphide domain was dominantly sulphide mineralogy. The Disseminated Sulphide domains were highly variable with a combination of silicate and Disseminated Sulphide mineralogy. The Stringer Sulphide domain was derived of stringer (vein style) sulphide mineralisation which exceeded a NSR value greater than AUD30. - Grade cutting was applied to 14% of the 270 domain-grade combinations, and was primarily applied to gold, arsenic and lead variables. The top cuts were applied to reduce the domain-grades with elevated CV and impacted only a limited number of samples within each domain. - The estimate was checked for any blocks that did not receive an estimate or had a negative grade estimate. In both cases, the nearest positive grade was assigned to these blocks and a unique flag assigned to identify these blocks if required. - A comparison between the naive, cell polygonal declustered composite grades was undertaken with good correlation between the values. The model was then visually validated in plan and section against the composite data and there was good spatial correlation between the composite and estimated grades. Then grade trend plots were constructed with good correlation between the composites and estimated grades.
Moisture	- Density has been measured both as dry density (those analysed at external laboratories) and with natural moisture (those measured on site using immersion). No bias was observed between the two methods, and the natural moisture of Wilga and Currawong deposits is typically low $(<0.5 \%)$.
Cut-off parameters	- The cut-off grade applied to the MRE has been derived from the Net Smelter Return (NSR) calculations that have been developed as part of this Feasibility Study. The MRE metal prices used were CU: USD 9110/t, Zn: USD 2660/t, Au: USD 1870/oz, Ag: USD 23.5/oz - The NSR calculation also used recoveries derived from non-linear equations that are based on a range of laboratory test results and are dependent on mineralisation type, head grade and end-product quality (Cu concentrate or Zn concentrate)

Criteria	Commentary
Mining factors or assumptions	- Due to the depth below surface to the top of the mineralisation, both Wilga and Currawong deposits are considered underground mining opportunities exclusively. - Mining options are part of on-going assessment and review. - The Wilga deposit has been depleted for previous mining and reported on an in-situ basis.
Metallurgical factors or assumptions	- Previous processing using a conventional floatation process and available metallurgical testing, copper, lead, zinc, silver, and gold can be successfully recovered from both deposits. Processing options are part of on-going assessment and review.
Environmental factors or assumptions	- Environmental considerations are a critical component of the licence to operate at Stockman. An Environmental Effects Statement has previously been prepared in 2014 and is being updated as part of the current FS. - Previous planning was to ensure no new permanent waste rock landforms will be created, and all residue either returned underground or disposed of sub-aqueously in existing tails storage facilities. - Planning for the waste management is on-going.
Bulk density	- Of the available assay data, 42% of Wilga assays have density data and at Currawong, 49% of assays have density data. Before 2008, density was measured using either immersion or air pycnometer methods. Post-2008, density was measured by immersion only. - Gas pycnometer determinations were undertaken at a laboratory and were collected as dry readings. The immersion determinations were made on site with natural moisture which is low ($<0.5 \%$). There is no observed bias between the two data sets. - No vugs or voids have been observed in the mineralised core and the rick is considered tight. The density data has been collected from all mineralisation types and is considered representative. - The good correlation between the pycnometer and immersion density measurements methods demonstrate that the density data is appropriate and representative of the mineralisation types. - Composites were created using a length-density compositing process. Solely for the purposes of composite creation, any sample with no density reading used a iron-sulphur-density or iron only density regression to assign density to that sample. If iron data was not available, a default density was applied based on the mineralisation style for that deposit. Approximately 8% of samples at Wilga and 29% of samples at Currawong were assigned a default density for the purpose of composite creation. - The density in the block model was estimated using the measured density exclusively.
Classification	- The MRE for the Wilga and Currawong deposits contain Indicated and Inferred Resource categories. The Resource classification was developed in accordance with the JORC Code (2012) definitions, and considered: - the drill spacing; - the number of drill holes used in the estimate; - the confidence in the interpretation in three dimensions (3D); - the quality of the resulting grade estimate; and - the quality of the input data.

Criteria	Commentary
	- The comparison of pre-2008 and 2008 onwards drill hole data used as input to the MRE identified potential risks and opportunities, which have informed the resource classification process. The classification in the lower-grade stringer and disseminated mineralisation, most affected by the low-grade bias in the pre-2008 holes, has conservatively excluded the pre-2008 holes when assessing the drill spacing. - On the other hand, the classification in the higher-grade massive sulphide mineralisation used all holes when assessing the drill spacing, as the massive sulphide interpretation is logging-based rather than grade-based, and the grade estimate is believed to be conservative already due to the low bias in the pre-2008 holes. - The resulting Indicated category is approximately equivalent to $<40 \mathrm{~m} \times$ 40 m spaced drilling. The Inferred mineralisation represents up to $80 \mathrm{~m} \times 80 \mathrm{~m}$ spaced drilling consistent with the geological understanding and interpreted continuity of the Currawong and Wilga deposits.
Audits or reviews	- A Snowden Optiro peer review was undertaken for the Wilga and Currawong block model estimates. - Aeris also Independently reviewed the Snowden Optiro and ran a check estimate. - Both reviews were completed satisfactorily.
Discussion of relative accuracy/ confidence	- The Wilga and Currawong deposits 2022 Mineral Resources are considered globally accurate, and the relative accuracy is reflected by the applied Mineral Resource classification. - The lack of certainty in the available mining void wireframe makes comparison with production questionable. The available depletion void model is incomplete, and there are alternate, conflicting production figures in use, hence comparisons with production is not possible.

[^0]: ${ }^{1}$ Refer to ASX Announcement "Group Mineral Resource and Ore Reserve Statement" dated 18 ${ }^{\text {th }}$ April 2023.

[^1]: or visit our website at www.aerisresources.com.au

