

ASX Announcement

2 November 2023

NEW HIGH-GRADE ZONES ENCOUNTERED IN NAL DRILLING

- New drilling at North American Lithium (NAL) operation, with latest results from 57 drillholes totalling 14,350m including:
 - 30.04m @ 1.22% Li20 from 132.12m in hole LAN-23-015a
 - 26.80m @ 1.10% Li₂O from 133.85m in hole LAN-23-017
 - 45.20m @ 1.03% Li₂O from 206.85m in hole LAN-23-019
 - 26.35m @ 1.54% Li₂0 from 72.3m in hole LAN-23-029
 - **37.90m @ 1.29% Li₂0** from 253.8m in hole LAN-23-031
 - **22.20m @ 1.52% Li**₂**O** from 225.55m in hole LAN-23-032
 - 68.30m @ 1.58% Li₂O from 253.55 in hole LAN-23-032
 - 67.15m @ 1.44% Li₂O from 353.95m in hole LAN-23-037
- New high-grade lithium pegmatite mineralised zones identified in north-west extensions to NAL mine and outside current DFS pit shell
- Lithium inside DFS pit shell continues to show continuity and consistency in grade and thickness, indicating potential for further resource conversion
- Assay results pending for additional 152 holes (43,500m)

North American lithium producer Sayona Mining Limited ("Sayona") (ASX:SYA; OTCQB:SYAXF) has identified multiple, high-grade lithium intercepts from recent drilling at the Company's North American Lithium (NAL) operation (SYA 75%; Piedmont Lithium 25%) in Québec, Canada, including new mineralised zones outside the current Definitive Feasibility Study (DFS) pit shell.

The results from 57 new drillholes totalling 14,350m have significantly increased the potential for a resource upgrade at the current single largest source of hard rock lithium production in North America.

The new high-grade mineralisation is located along the north-west margin of the NAL deposit, outside the current pit shell model. Lithium mineralisation inside the DFS pit shell continues to show continuity and consistency in grade and thickness, further indicating the potential for resource conversion, as well as resource definition below the DFS pit shell.

Sayona is continuing to increase its hard rock lithium resource base in Québec, with assay results pending from an additional 152 holes from 43,500m of drilling at NAL. The positive results follow the recent first shipments of spodumene (lithium) concentrate to the international lithium market, with Sayona continuing to advance NAL's production ramp-up.

Sayona's Interim CEO, James Brown, commented: "These results are hugely significant for NAL, showing the potential for a resource upgrade at North America's single largest source of hard rock lithium production.

"Notably, some of the intercepts from this recent drilling program are thicker and higher grade than any previously encountered, increasing confidence in NAL's mine life."

"We look forward to seeing the results from the remaining assays as we work to expand the NAL resource, further highlighting the importance of this operation for not only the joint venture partners but for the Abitibi-Témiscamingue region as a key source of high-grade lithium for the battery and EV revolution."

Sayona is committed to continued engagement with local communities concerning the development of the NAL operation, including First Nations and other local community members, consistent with its proactive stakeholder engagement approach focused on achieving industry best practice.

Hole ID	Easting	Northing	Total length (m)	From	То	Description
LAN-23-001	291852	5365761	352.95	223.75	246.05	22.30m @ 1.28% Li ₂ 0 from 223.75m
LAN-23-003	291942	5365647	217	129.4	150.7	21.30m @ 1.43% Li ₂ 0 from 129.40m
	201005	EDGEGDE	541	58.7	79.5	20.80m @ 1.43% Li ₂ 0 from 58.70m
LAN-23-006	291985	5365625	541	468.9	4951	26.20m @ 0.75% Li ₂ 0 from 468.90m
LAN-23-009	291681	5365785	400	290.65	326.3	35.65m @ 0.85% Li ₂ 0 from 290.65m
LAIN-23-009	291001	3303763	400	351.65	386.85	35.20m @ 1.31% Li ₂ 0 from 351.65m
LAN-23-012	291707	5365748	505	83.5	104.3	20.80m @ 0.65% Li ₂ 0 from 83.50m
LAIN-23-012	291707	5505746	303	376.3	399.8	23.50m @ 1.68% Li ₂ 0 from 376.30m
LAN-23-012-W1	291824	5365871	625	372.1	396.05	23.95m @ 1.41% Li ₂ 0 from 372.10m
LAN-23-015a	291761	5366142	382	132.12	162.16	30.04m @ 1.22% Li ₂ 0 from 132.12m
LAN-23-016	291897	5365609	316	140.1	163.4	23.30m @ 0.91% Li ₂ 0 from 140.10m
LAIN-23-010	291097	2202009	510	260.4	285.15	24.75m @ 1.20% Li ₂ 0 from 260.40m
LAN-23-017	291875	5365630	373	133.85	160.65	26.80m @ 1.10% Li ₂ 0 from 133.85m
LAN-23-019	291875	5365630	310	206.85	252.05	45.20m @ 1.03% Li ₂ 0 from 206.85m
LAN-23-029	292091	5365886	198	72.3	98.65	26.35m @ 1.54% Li ₂ 0 from 72.30m
LAN-23-030	291926	5365551	355	157.76	197.98	40.22m @ 0.71% Li ₂ 0 from 157.76m
LAN-23-031	291915	5365894	397	253.8	291.7	37.90m @ 1.29% Li ₂ 0 from 253.80m
LAIN-23-031	291913	5505694	397	295.8	322.9	27.10m @ 0.79% Li ₂ O from 295.80m
LAN-23-032	291659	5366058	346	225.55	247.75	22.20m @ 1.52% Li_2O from 225.55m
LAN-23-032	291039	3300038	540	253.55	321.85	68.30m @ 1.58% Li ₂ O from 253.55m
LAN-23-036a	292090	5365888	362	277	299	22.00m @ 1.19% Li ₂ 0 from 277.00m
LAN-23-037	291884	5365805	433	353.95	421.1	67.15m @ 1.44% Li ₂ 0 from 353.95m
				157.6	179.1	21.50m @ 0.87% Li ₂ 0 from 157.60m
LAN-23-040	292094	5365617	532	395.9	416.15	20.25m @ 0.89% Li ₂ 0 from 395.90m
				495.65	519.1	23.45m @ 0.78% Li ₂ 0 from 495.65m
LAN-23-041	291811	5365670	696	330.75	362.6	31.85m @ 1.04% Li ₂ 0 from 330.75m

Table 1: Selected Drill Hole Intercepts

Notes: The coordinates are in UTM NAD83 Zone 18 format. Intercept selection is based on pegmatite lithology using a 0.25% Li_2O lower cut and maximum 4m of consecutive internal dilution with a minimum 2m interval and 0.6% + Li_2O intercept grade for inclusion (intercepts over 2m @ more than 0.6% Li_2O are considered economic at NAL). Any non-pegmatite lithology within an intercept has been treated as having nil grade. The selection algorithm has been applied to all drill results and may not represent true thickness. A full listing of drill intercepts and drill collar information is presented as Table 2 and Table 3 at the end of this report.

Figure 1: Plan view of the 2023 drillholes

North-West Area - Section -500W

The intersected mineralisation was located at the north-west margin of the DFS pit design, ranging to approximately 235m below surface. The mineralisation takes the form of substantial 15m to 68m thick undeformed pegmatite dykes hosting 15-25% of spodumene.

The pegmatite dykes swarm is hosted at the margin of the Preissac-Lacorne granodiorite and dips 45-55 degrees to the south-west. The zone is open at depth and laterally to the north-west. Highlights and interpretation are shown in Figure 2.

Figure 2: Drilling Cross Section - 500W

Central Area - Sections -300W, -250W, -150W and -100W

A series of in-pit drill holes were drilled to demonstrate the continuity of the mineralisation between historical holes, aiming to convert Inferred Resources to Indicated and Measured Resources and potentially increase Mine Reserves.

Preliminary interpretation and modelling show that the program successfully confirmed the position of the existing zones and the potential for a high conversion of the resource categories within the DFS pit shell. Figures 3 to 5 show the highlights of the resource conversion drilling program.

Figure 3: Drilling Cross Section -300W

Figure 4: Drilling Cross Section -200W

Figure 5: Drilling Cross Section -150W

The objectives of the 2023 drilling program at NAL comprise the conversion of Inferred Resources to Measured and Indicated Resources, as well as exploration for extensions of the NAL mineral resource to the north-west and south-east of the existing pit.

NAL recently reported a quarterly record of 31,486 dry metric tonnes of spodumene concentrate production, with three shipments conducted during the September quarter (refer ASX release 30 October 2023).

NAL comprises a contiguous group of 42 mineral titles (41 claims, one mining lease) spanning 1,493 hectares, situated near La Corne township in Québec's Abitibi-Témiscamingue region. The operation has a lithium mine and concentrator, with production of spodumene concentrate having recommenced in March 2023. The project lies 60 kilometres north of the city of Val d'Or, a major mining service centre, with access to road and rail infrastructure together with skilled labour.

Issued on behalf of the Board.

For more information, please contact:

James Brown Director/CEO Email: <u>info@sayonamining.com.au</u> For investor/media queries, contact:

Anthony Fensom, Republic PR Ph: +61 (0)407 112 623 Email: <u>anthony@republicpr.com.au</u>

About Sayona Mining

Sayona Mining Limited is a North American lithium producer (ASX:SYA; OTCQB:SYAXF), with projects in Québec, Canada and Western Australia.

In Québec, Sayona's assets comprise North American Lithium together with the Authier Lithium Project and its emerging Tansim Lithium Project, supported by a strategic partnership with American lithium developer Piedmont Lithium Inc. (Nasdaq:PLL; ASX:PLL). Sayona also holds a 60% stake in the Moblan Lithium Project in northern Québec.

In Western Australia, the Company holds a large tenement portfolio in the Pilbara region prospective for gold and lithium. Sayona is exploring for Hemi-style gold targets in the world-class Pilbara region, while its lithium projects include Company-owned leases and those subject to a joint venture with Morella Corporation (ASX:1MC).

For more information, please visit us at www.sayonamining.com.au

References to Previous ASX Releases

- Quarterly Activities Report 30 October 2023
- DFS confirms NAL value with A\$2.2B NPV 14 April 2023

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and all material assumptions and technical parameters continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statements

This announcement contains certain forward-looking statements. Such statements are only predictions, based on certain assumptions and involve known and unknown risks, uncertainties and other factors, many of which are beyond Sayona's control. Actual events or results may differ materially from the events or results expected or implied in any forward-looking statement.

The inclusion of forward-looking statements in this announcement should not be regarded as a representation, warranty or prediction with respect to the accuracy of the underlying assumptions or that any forward-looking statements will be or are likely to be fulfilled.

Competent Person's Statement

The information in this report is based on information compiled by Mr Simon Attwell, a Competent Person, and who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Attwell is an employee of Attgold Pty Ltd ("Attgold") which provides full time geological services to Sayona.

Mr Attwell has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Attwell consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Qualified Persons Statement

Mr Ehouman N'Dah, P.Geo. of Sayona Inc. (a subsidiary of Sayona), Mr. Carl Corriveau, PGeo of Sayona Inc. are "qualified persons" as defined by National Instrument 43-101 and have reviewed and approved the disclosure of the scientific and technical information contained in this press release. Mr N'Dah and Mr Corriveau are members of the *Ordre des Géologues du Québec*.

Hole ID	Easting	Northing	Azimuth	Dip	Total length (m)	From (m)	To (m)	Width (m)	Li2O (%)	Metal factor
						30.8	37.1	6.3	1.05	6.59
						64.2	68.85	4.65	1.30	6.07
						154.3	157.45	3.15	1.66	5.22
	001050		16.0	-59.5		163.55	167.95	4.4	1.50	6.60
LAN-23-001	291852	2 5365761	46.3		352.95	223.75	246.05	22.3	1.28	28.52
						256.05	262.3	6.25	1.83	11.46
						275.5	283.15	7.65	1.00	7.63
						291.7	297	5.3	1.67	8.86
						50.6	52.95	2.35	1.16	2.72
						158.8	162.2	3.4	1.61	5.47
						193.9	202.15	8.25	0.65	5.40
						217.7	222.2	4.5	0.83	3.72
						231.4	244.45	13.05	1.69	22.07
						267.1	272.5	5.4	0.69	3.75
LAN-23-002	291804	5365802	44.6	-56.6	540	279.7	293	13.3	1.37	18.21
20 002	291001	0000002	11.0	00.0	010	313	316.1	3.1	1.18	3.67
						339.3	347.95	8.65	0.88	7.63
						398.5	400.8	2.3	0.68	1.56
						409.1	413.5	4.4	0.86	3.77
						434.2	436.45	2.25	1.17	2.63
							443.15	457	13.85	0.96
						484.5	488.9	4.4	0.77	3.39
						20	22.6	2.6	1.98	5.15
LAN-23-003	291942	5365647	47.3	-57.6	217	99	109.25	10.25	0.75	7.65
						129.4	150.7	21.3	1.43	30.44
						111.7	113.9	2.2	1.09	2.39
						133.9	144	10.1	0.72	7.29
LAN-23-004	291729	5365829	46.0	-46.9	295	212.25	220.3	8.05	0.95	7.66
						238.2	248.6	10.4	1.27	13.21
						277	285.5	8.5	1.67	14.20
						27.95	40.75	12.8	1.33	17.04
						49.9	58.8	8.9	1.04	9.21
						76.4	87.7	11.3	1.31	14.78
LAN-23-005	292003	5365660	44.5	-47.1	247	156.1	168.9	12.8	1.14	14.60
						185.35	191.5	6.15	1.52	9.35
						206.75	209.5	2.75	0.61	1.67
					10-	237.25	247	9.75	1.00	9.79
LAN-23-005-W1	292091	5365743	50.4	-44.4	198	185.4	192.4	7	1.61	11.28
LAN-23-005-W3	292123	5365771	47.1	-44.6	264	234	252.4	18.4	1.05	19.41
LAN-23-006	291985	5365625	41.9	-47.9	541	8.8	11.6	2.8	1.85	5.18

Table 2 – Table of Intercepts

Hole ID	Easting	Northing	Azimuth	Dip	Total length (m)	From (m)	To (m)	Width (m)	Li2O (%)	Metal factor
						58.7	79.5	20.8	1.43	29.68
						93	97.5	4.5	1.05	4.71
						113.1	128.45	15.35	1.02	15.69
						205.05	224.9	19.85	1.49	29.48
						267.9	270.4	2.5	1.65	4.14
						288.8	297.75	8.95	1.53	13.69
						337.05	341.05	4	1.73	6.92
						415.45	417.5	2.05	0.69	1.40
						468.9	495.1	26.2	0.75	19.68
LAN-23-007	292123	5365716	39.7	-47.1	46.4	13.7	18.2	4.5	0.63	2.85
LAN-23-008	291687	5365891	47.7	-50.1	142	80.5	84.05	3.55	1.10	3.91
LAN 23 000	291007	0000091	47.7	50.1	142	130.1	134.5	4.4	1.38	6.06
						58.1	60.25	2.15	1.56	3.35
						73.95	81.1	7.15	0.60	4.32
LAN-23-009	291681	5365785	46.0	-49.5	400	221.95	226.95	5	1.50	7.53
						290.65	326.3	35.65	0.85	30.12
						351.65	386.85	35.2	1.31	46.18
						453.3	460.6	7.3	0.86	6.27
LAN-23-009-W1	291858	5365964	48.5	-53.2	589	515.25	518.2	2.95	1.35	3.98
						525.5	536	10.5	0.87	9.17
LAN-23-011	291656	5365963	37.4	-48.9	109	52	54.9	2.9	0.67	1.95
						83.5	104.3	20.8	0.65	13.54
						131.8	134.75	2.95	1.19	3.51
						156.5	160.2	3.7	0.67	2.49
						248.6	251.9	3.3	0.90	2.98
LAN-23-012	291707	5365748	38.9	-52.3	505	290.2	293	2.8	0.61	1.70
LAN-23-012	291707	5505746	30.9	-52.5	505	298.2	301.9	3.7	0.62	2.28
						347.3	349.9	2.6	1.44	3.75
						358.1	369.1	11	1.28	14.05
						376.3	399.8	23.5	1.68	39.41
						478.6	480.75	2.15	1.29	2.77
						290.5	293.15	2.65	0.97	2.56
						344.25	348.85	4.6	1.48	6.81
LAN-23-012-W1	291824	5365871	49.0	-48.0	625	355.95	365.05	9.1	1.56	14.23
						372.1	396.05	23.95	1.41	33.70
						533.8	537.2	3.4	1.14	3.89
						23.3	25.95	2.65	1.17	3.10
						110.71	112.8	2.09	1.07	2.24
LAN-23-013	291939	5365641	45.2	-69.9	181	129.26	136.05	6.79	0.99	6.744
						141.5	160.75	19.25	1.10	21.25
						168.8	179.6	10.8	0.61	6.55

Hole ID	Easting	Northing	Azimuth	Dip	Total length (m)	From (m)	To (m)	Width (m)	Li20 (%)	Metal factor	
LAN-23-015	291761	5366142	45.3	-60.6	82	56.1	59.7	3.6	0.94	3.37	
						116.16	119.8	3.64	1.76	6.39	
						132.12	162.16	30.04	1.22	36.77	
						168.33	179.81	11.48	1.54	17.73	
					_	186.07	199.24	13.17	0.83	10.94	
LAN-23-015a	291761	5366142	43.8	43.8	-58.3	382	265	270.82	5.82	0.72	4.18
						288.29	306.53	18.24	0.90	16.47	
						319.62	323.5	3.88	1.07	4.15	
					335.14	337.59	2.45	1.02	2.505		
						365.92	373.43	7.51	0.97	7.26	
						120.6	131.45	10.85	0.63	6.78	
						140.1	163.4	23.3	0.91	21.25	
LAN-23-016	291897	5365609	56.0	-45.1	316	240.8	245.95	5.15	1.33	6.84	
						260.4	285.15	24.75	1.20	29.75	
						300.65	304.55	3.9	0.96	3.75	
						97	99.35	2.35	0.87	2.04	
						122.15	125.15	3	1.10	3.30	
						133.85	160.65	26.8	1.10	29.48	
LAN-23-017	291875	5365630	41.7	-58.2	373	207.05	213.6	6.55	1.20	7.84	
							250.35	254.4	4.05	0.91	3.69
						295.45	298.45	3	0.81	2.44	
						354.25	356.3	2.05	1.18	2.42	
						43.95	49.2	5.25	0.60	3.17	
LAN-23-019	291875	5365630	46.5	-70.7	310	76.55	85.95	9.4	0.72	6.72	
	291070	0000000	40.0	70.7	010	99.7	108.45	8.75	1.48	12.93	
						206.85	252.05	45.2	1.03	46.38	
						7.45	17.4	9.95	1.60	15.95	
						55.55	61.4	5.85	1.54	9.03	
LAN-23-020	292127	5365973	43.9	-50.7	325	98.05	112.7	14.65	1.12	16.47	
27 1 20 020	292127	00000770	10.9	00.7	020	156	161.25	5.25	1.69	8.85	
						185.5	198.5	13	1.02	13.29	
						294.6	300.15	5.55	1.67	9.27	
LAN-23-021	292048	5365911	43.9	-50.2	85	69.25	75	5.75	1.35	7.78	
						15.6	23.75	8.15	1.33	10.86	
LAN-23-022	291681	5365675	41.5	-48.4	661	38.4	42	3.6	0.80	2.89	
	251001	0000070	41.5 -48.4	001	163.85	172.55	8.7	1.79	15.56		
						194.9	202.9	8	0.81	6.48	
LAN-23-023	291965	5365709	53.3	-47.8	66	21.3	25.7	4.4	1.16	5.10	
LAN-23-025	292172	5365763	184.8	-88.3	82	61.2	67	5.8	0.98	5.67	
LAN-23-026	291853	5365879	45.6	-66.7	220	26.9	29.35	2.45	1.13	2.77	
	231000	0000079	10.0	00.7	220	72.7	83.9	11.2	1.09	12.16	

Hole ID	Easting	Northing	Azimuth	Dip	Total length (m)	From (m)	To (m)	Width (m)	Li2O (%)	Metal factor
						105.8	108.5	2.7	1.47	3.96
						138.1	152.1	14	1.02	14.22
						158.1	170.2	12.1	0.91	10.97
						194.95	204.4	9.45	1.54	14.51
LAN-23-027	291659	5366058	45.4	-58.8	220.5	71.4	76.4	5	1.15	5.73
LAN-23-027	291039	3300030	40.4	-30.0	220.5	160.27	162.45	2.18	1.70	3.71
LAN-23-028	292057	5365851	41.6	-65.0	67	59	61.9	2.9	1.16	3.36
						19.05	22.05	3	1.36	4.09
LAN-23-029	292091	5365886	49.8	-80.3	198	72.3	98.65	26.35	1.54	40.58
						163.2	167.65	4.45	1.33	5.84
						74.36	76.58	2.22	2.04	4.52
						130.73	132.76	2.03	1.07	2.18
LAN-23-030	291926	5365551	42.2	-52.3	355	157.76	197.98	40.22	0.71	28.72
						282.92	286.41	3.49	0.69	2.39
						346.5	350.55	4.05	1.14	4.61
						5.5	8.5	3	0.97	2.91
						17.85	25.8	7.95	0.85	6.75
						35.8	38.4	2.6	1.42	3.68
						43.9	47.2	3.3	1.44	4.75
						54.4	63.6	9.2	0.64	5.92
						76.45	80.8	4.35	1.31	5.69
LAN-23-031	291915	5365894	43.0	-53.4	397	128.1	140.4	12.3	1.65	20.34
LAN-23-031	291913	5505094	43.0	-00.4	397	170.8	178.3	7.5	1.30	9.74
						194.3	196.55	2.25	1.72	3.87
						201.05	208.9	7.85	0.90	7.03
						253.8	291.7	37.9	1.29	48.90
						295.8	322.9	27.1	0.79	21.38
						350.5	358.85	8.35	1.63	13.62
						384.9	390	5.1	1.21	6.17
						73.5	78.35	4.85	1.66	8.07
						157.6	162	4.4	1.41	6.21
LAN-23-032	291659	5366058	43.0	-66.6	346	225.55	247.75	22.2	1.52	33.81
						253.55	321.85	68.3	1.58	107.71
						327.35	330.45	3.1	1.48	4.60
						62.7	74.1	11.4	0.96	10.97
LAN-23-033	291856	5365885	49.2	-68.9	220	130.9	134.35	3.45	1.82	6.28
LAN 20 000	291000	0000000	49.Z	00.9	220	169.4	178.05	8.65	1.65	14.27
						204.25	218.5	14.25	1.48	21.13
						52.1	66.85	14.75	1.41	20.77
LAN-23-036a	292090	5365888	43.6	-63.4	362	74.2	77.65	3.45	1.15	3.96
						83.3	88.3	5	1.43	7.15

Hole ID	Easting	Northing	Azimuth	Dip	Total length (m)	From (m)	To (m)	Width (m)	Li2O (%)	Metal factor
						154.05	172	17.95	1.06	18.96
						176.35	181	4.65	0.74	3.42
						188	196	8	1.72	13.79
						200.6	204.8	4.2	0.73	3.05
						209.8	219.3	9.5	0.76	7.24
						233.85	247.05	13.2	0.86	11.38
						277	299	22	1.19	26.18
						314.9	317.4	2.5	0.67	1.68
						21.5	24.1	2.6	1.40	3.63
						104.8	118.6	13.8	1.30	17.93
						146.6	157	10.4	1.35	14.04
						161.8	169.2	7.4	0.89	6.59
LAN-23-037	291884	5365805	44.7	-55.4	433	184.95	189.1	4.15	1.72	7.14
						222.6	226.7	4.1	1.66	6.80
						248.8	252.95	4.15	1.58	6.54
						290.3	295.4	5.1	0.98	4.98
						353.95	421.1	67.15	1.44	96.43
	001050		44.0	45.0	100	79.7	84.1	4.4	0.61	2.68
LAN-23-038	291852	5365480	44.2	-45.2	106	95.55	104.4	8.85	0.74	6.57
						128.7	137.25	8.55	1.34	11.47
	001070	5065000	10.1	1 <i>C</i> 1	450.45	221.1	226.35	5.25	1.13	5.92
LAN-23-039	291978	5365388	42.1	-46.4	453.45	271.5	277.95	6.45	1.18	7.59
						326.65	331.45	4.8	0.95	4.56
						18.5	26.45	7.95	0.85	6.78
						46	49.65	3.65	1.22	4.45
						76.75	82.9	6.15	1.79	11.01
						87.1	90.7	3.6	1.60	5.75
						110.7	113.05	2.35	0.74	1.74
						144.7	150.75	6.05	1.23	7.454
LAN-23-040	292094	5365617	42.8	-47.8	532	157.6	179.1	21.5	0.87	18.64
						221.45	238.1	16.65	1.39	23.14
						364.3	377.55	13.25	0.66	8.80
						384.45	387	2.55	0.73	1.85
						395.9	416.15	20.25	0.89	18.08
						432.95	440.95	8	0.74	5.92
						495.65	519.1	23.45	0.78	18.24
						19.65	22.65	3	1.66	4.98
						110.2	114.45	4.25	1.17	4.98
LAN-23-041	291811	5365670	42.1	-53.7	696	125.75	138.9	13.15	1.49	19.55
						163.75	169.75	6	1.29	7.74
						240.3	247	6.7	0.73	4.89

Hole ID	Easting	Northing	Azimuth	Dip	Total length (m)	From (m)	To (m)	Width (m)	Li2O (%)	Metal factor
						330.75	362.6	31.85	1.04	33.19
						412.85	417.1	4.25	0.77	3.27
						22.8	32.65	9.85	1.58	15.56
						62.05	77.65	15.6	1.70	26.50
						101.6	105.5	3.9	1.03	4.00
LAN-23-042	291962	5366030	42.3	-55.4	289	121.7	132.5	10.8	1.77	19.07
						161.5	177.2	15.7	0.62	9.66
						234.15	239.6	5.45	1.13	6.17
						259.35	262.75	3.4	1.32	4.48
LAN-23-046	291961	5365790	334.6	-89.5	111	7.6	13.3	5.7	0.94	5.36
LAN-23-047	292313	5366003	44.2	-54.1	181	119.2	121.3	2.1	0.83	1.75
LAN-23-050	292238	5366023	45.2	-49.4	197	125.3	130.8	5.5	0.77	4.23
LAN-23-051	292777	5365291	45.1	-52.0	163	108.3	120	11.7	1.56	18.26
LAN-23-052	292377	5365340	44.2	-55.1	109	18.55	24.65	6.1	1.06	6.47
LAN-23-059	293271	5365223	44.7	-49.7	301	49.8	52.9	3.1	1.58	4.88
LAN-23-061a	291132	5365928	41.5	-42.2	298	247.2	257.1	9.9	0.97	9.58

Notes: The coordinates are in UTM NAD83 Zone 18 format. Intercept selection is based on pegmatite lithology using a 0.25% Li₂O lower cut and maximum 4m of consecutive internal dilution with a minimum 2m interval and 0.6%+ Li₂O intercept grade for inclusion (intercepts over 2m @ more than 0.6% Li₂O are considered economic at NAL). Any non-pegmatite lithology within an intercept has been treated as having nil grade. The selection algorithm has been applied to all drill results and may not represent true thickness. "NSV" stands for "no significant value".

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Total Length (m)
LAN-23-001	291852	5365762	447.6	45.0	-58.6	353.0
LAN-23-002	291803	5365802	445.5	45.0	-55.6	540.0
LAN-23-003	291942	5365647	460.0	45.0	-58.6	217.0
LAN-23-004	291730	5365831	435.8	46.5	-46.3	295.0
LAN-23-005	291994	5365659	464.5	44.0	-46.2	247.0
LAN-23-005-W1	292091	5365743	344.2	44.0	-46.2	27.0
LAN-23-005-W2	292102	5365753	329.5	44.0	-46.2	45.0
LAN-23-005-W3	292123	5365771	301.8	44.0	-46.2	30.0
LAN-23-006	291984	5365624	460.4	42.9	-47.8	541.0
LAN-23-007	292120	5365712	446.6	43.7	-46.5	48.0
LAN-23-008	291687	5365891	427.9	44.7	-50.0	142.0
LAN-23-009	291678	5365785	444.9	44.0	-49.6	400.0
LAN-23-009-W1	291858	5365964	144.1	44.0	-49.6	196.0
LAN-23-011	291656	5365963	420.5	44.8	-49.0	109.0
LAN-23-012	291703	5365744	449.1	43.1	-52.0	505.0

Table 3 – Drill holes parameters

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Total Length (m)
LAN-23-012-W1	291824	5365871	218.2	43.1	-52.0	338.4
LAN-23-013	291942	5365647	460.0	45.2	-69.1	181.0
LAN-23-015	291761	5366144	420.6	43.4	-57.7	82.0
LAN-23-015a	291761	5366144	420.6	43.3	-58.3	382.0
LAN-23-016	291903	5365610	437.3	45.0	-45.1	316.0
LAN-23-017	291875	5365629	436.2	41.6	-57.9	373.0
LAN-23-019	292169	5365763	430.7	43.5	-70.2	310.0
LAN-23-020	292120	5365823	428.5	44.9	-50.2	325.0
LAN-23-021	292169	5365921	427.5	44.9	-50.1	85.0
LAN-23-022	291682	5365679	440.7	43.3	-49.6	661.0
LAN-23-023	291952	5365705	462.1	43.0	-49.9	45.5
LAN-23-024	291913	5365745	452.1	43.1	-52.8	53.3
LAN-23-025	292169	5365763	430.7	0.0	90.0	82.0
LAN-23-026	291832	5365870	435.9	44.1	-66.2	220.0
LAN-23-027	291663	5366063	415.2	44.4	-58.9	220.5
LAN-23-028	292057	5365851	434.2	39.0	-65.0	67.0
LAN-23-029	292089	5365886	429.2	52.1	-80.1	198.0
LAN-23-030	291922	5365556	454.1	44.1	-52.0	355.0
LAN-23-031	291916	5365900	435.4	42.9	-53.1	397.0
LAN-23-032	291659	5366058	414.6	44.1	-66.0	346.0
LAN-23-033	291832	5365870	435.9	44.0	-55.0	220.0
LAN-23-036	292089	5365886	429.2	44.1	-62.9	23.5
LAN-23-036a	292089	5365886	429.2	44.1	-62.9	362.0
LAN-23-037	291887	5365814	443.8	43.0	-53.8	433.0
LAN-23-038	291849	5365479	445.8	45.0	-45.0	106.0
LAN-23-039	291975	5365390	442.3	43.9	-45.1	453.5
LAN-23-040	292093	5365619	459.6	42.7	-47.8	532.0
LAN-23-041	291812	5365670	435.2	42.3	-53.5	696.0
LAN-23-042	291940	5366020	423.1	41.4	-54.1	289.0
LAN-23-043	292008	5365767	450.8	43.1	-46.1	112.0
LAN-23-045	292153	5365279	420.0	45.2	-48.1	112.0
LAN-23-046	291962	5365797	445.5	43.0	90.0	111.0
LAN-23-047	292327	5366015	410.3	45.2	-54.0	181.0
LAN-23-050	292237	5366024	408.0	45.1	-50.0	197.0
LAN-23-051	292776	5365289	414.0	45.1	-52.0	163.0
LAN-23-052	292776	5365289	414.0	45.1	-52.0	109.0
LAN-23-054	292384	5365962	414.0	42.9	-77.1	202.0
LAN-23-056	293266	5365222	397.0	45.1	-50.0	300.5
LAN-23-058	292506	5365831	430.4	44.9	-45.0	202.0
LAN-23-059	293372	5365116	402.5	45.2	-50.2	301.0

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Total Length (m)
LAN-23-061a	291133	5365932	396.7	45.0	-45.1	298.0
LAN-23-063	292653	5365674	425.8	45.0	-50.1	214.0
Total (m)						14,350.2

Notes: The coordinates are in UTM NAD83 Zone 18 format.

Appendix 1

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Samples are obtained from diamond drilling (NQ and HQ, diameter core). Sample database has been established in UTM coordinates (NAD 83 Zone 18).
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Geological logging of recovered drill core visually identified pegmatite and its constituent mineralogy to determine the intervals for sampling. Lithium bearing spodumene is easily identified. The drill core was photographed and logged prior to sampling. Sampling has been determined on geological characteristics and ranges from between 0.25m and 1m in length. Core was cut using a diamond saw core-cutter and half core sampled. All pegmatite material intersected downhole has been sampled.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Sample preparation and assaying methods are industry standard and appropriate for this type of mineralisation. The project is supported by core samples taken by diamond drilling (no other sampling methods were used). Reference materials (standards and blank) as well as core twin and pulp duplicates were added to the sequence prior to shipping.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling from surface was carried out by diamond drilling methods, using standard tube to recover NQ and HQ size core (no other drilling methods were used). Core was not orientated. Downhole drill azimuth and dip has been determined by TN-14 azimuth aligner and downhole Reflex EZ-TRAC multi and single shot recording instruments.

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drilling was completed directly into the hard (fresh) rock, starting at the surface, and core recovery approximates 100% (no other sampling methods were used)
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	To ensure representative nature of the samples, core has been marked up, and core recovery and RQD measurements recorded. Core recoveries were typically high and are considered acceptable and it is not believed a bias has been introduced into the sampling system.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no correlation or bias between the grades obtained and core recovery.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All drill core has been geologically logged to a level of detail appropriate for the project. Geological logging, RQD measurements and structural information has been completed. The logging is qualitative and is supported by core photography of marked up core. The logging and its level of detail was of sufficient quality and appropriate to support Mineral Resource estimation, mining studies and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging recorded qualitative descriptions of lithology, alteration, mineralisation, veining, and structure. Logging also includes measurement of core recovery and RQD.
	The total length and percentage of the relevant intersections logged.	All the drilled footage for holes in the current release has been described and included in the database.
sample	If core, whether cut or sawn and whether quarter, half or all core taken.	Drill core has been cut in half by diamond saw with half- core samples packaged, grouped into bulk bags for dispatch to the laboratory.
preparation		Half core sampling is considered an appropriate method to ensure a sufficient quantity of sample is collected for it to be representative of the drill material and appropriate for the grain size of the material being sampled.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	There was no sampling method other than diamond drilling (core drilling).
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sampling, sample preparation and quality control protocols are considered appropriate for the material being sampled. Sample preparation was conducted in independent accredited laboratory, ALS laboratories in Val-d'Or, Quebec). Each core sample is dried and weighed, and the entire sample is crushed to 70% passing 2 mm. A split of up

Criteria	JORC Code Explanation	Commentary
		to 250 g is taken using a riffle splitter and pulverised to better than 85% passing 75 μm.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The core samples have been selected by visual logging methods and is considered appropriate for the analytical work being carried out and, in an industry, standard way.
	Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling.	Remaining half core, crushed sample (reject) and pulverised sample (pulp) are retained for further analysis and quality control checks.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Samples sizes are considered appropriate for the style of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples were analysed at independent accredited laboratories (in Val-d'Or, Quebec). All samples were analysed by ME-MS-89L Sodium Peroxide Fusion and ICP-MS finish using a 0.2 g aliquot of pulverised material. Sayona has regularly inserted 3rd party reference control samples and blank samples in the sample stream to monitor assay and laboratory performance. Assaying was completed by ALS Laboratories, Vancouver. It is believed the sampling, assaying and laboratory procedures are representative of the drilled material and appropriate for the project.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	There was no sampling method other than diamond drilling. No geophysical tools or XRF instruments have been used in determining mineralisation.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Assay sample of Certified Reference Material, half core duplicate sampling and insertion of blanks into the sample sequence has been undertaken to ensure QA/QC. Protocols include systematic insertion of CRM standards at approximately 1 in every 25 samples and alternating blank samples of quartz and core duplicate samples for every 1 in 25 samples in previous operator programs (SOQUEM). Since June 2022, Sayona's protocols have switched to a control sample insertion of every 1 in 20 samples. The CRM material used for monitoring lithium values are OREAS 750, OREAS 751, OREAS 752 and OREAS 753. These standards have been selected to reflect the target mineralisation. Assays of quality control samples were compared with reference samples in database and verified as acceptable prior to use of data from analysed batches.

Criteria	JORC Code Explanation	Commentary
		The assaying techniques and quality control protocols used are considered appropriate for the data to be reported in its current form and estimation of Mineral Resources.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Sampling intervals defined by the geologist have assigned sample identification numbers prior to core cutting.
		The results have been reviewed by multiple geologists. The company conducts internal data verification protocols which have been followed. The verification of significant intersections has been completed company personnel and Qualified Person.
		There are no currently known drilling, sampling, recovery, or other factors that could materially affect the accuracy or reliability of the data.
	The use of twinned holes.	No twinned holes have been completed.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All sampling and assay information were stored in a secure GeoticLog database with restricted access. This data has been verified against original laboratory assay results.
		Assay results from the laboratory with corresponding sample identification are loaded directly into the GeoticLog database.
	Discuss any adjustment to assay data.	Li% has been converted to Li20% for the purposes of reporting. The conversion used is Li20 = Li x 2.153. No other adjustments to assay data have been undertaken.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drilling collars are positioned using a Trimble R8 differentiel GPS by our internal technicians. Drill rig alignment was attained using an electronic azimuth aligner (TN-14 azimuth aligner). Downhole survey was collected at 3m intervals using Reflex EZ- TRAC instruments.
	Specification of the grid system used.	The grid system used is UTM NAD83 zone 18.
	Quality and adequacy of topographic control.	The quality and adequacy of the topographic control and drill hole database are considered appropriate for the work undertaken and data to be used for estimation of Mineral Resources.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drill hole spacing ranges from 50–80m within the mineral resource area. The spacing between drill hole fences is typically on drill sections spaced 50m apart in 2022-2023. The drilling grid is looser in areas at the exploration stage and may include isolated drill holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation	The data spacing is sufficient to establish the degree of geological and grade continuity for the exploration results reported. Further drilling is required to determine the extent of currently defined mineralisation.

Criteria	JORC Code Explanation	Commentary
	procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	Samples are not composited. For the purposes of illustrating exploration results, lithium values for pegmatite dykes are obtained by weighted average of individual samples.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling may intersect mineralisation at various angles but is typically orthogonal to the Lithium pegmatites dykes. Some drill positions have utilized the same drill pad but with a variable dip to intersect the target mineralisation at depth.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Relationship between the drilling orientation and the orientation of key mineralised structures is appropriate. Drill holes exploring the extents of the NAL deposit intersect the main pegmatite dykes with the right angle.
Sample security	The measures taken to ensure sample security.	All reasonable measures and Industry standard sample security and storage have been undertaken. The security of samples is controlled by tracking samples from drill rig, core logging, sampling, laboratory to database. Drill core was delivered from the drill rig to the project core yard every shift. On completion of geological and geotechnical logging, core processing was completed by Explo-Logik's personnel, and/or by their representatives, and then sent to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Internal reviews of core handling, sample preparation and assays laboratories were conducted on a regular basis by Sayona personnel and/or by owner's representatives. Mr. Pierre-Luc Richard, P.Geo., completed independent review of logging and sampling. Sayona's internal Qualified Person also conducted site visits and review application of core logging and sampling protocols and procedures. The sample preparation, security and analytical procedures are consistent with current industry standards and are appropriate for the styles of mineralisation identified. There are no identified drilling, sampling or recovery factors that materially impact the adequacy and reliability of the results of the drilling program in place at the NAL Project.

Criteria	JORC Code explanation	Commentary
Criteria Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The property is located in La Corne Township in the Abitibi-Témiscamingue region, approximately 38 km southeast of Amos, 15 km west of Barraute and 60 km north of Val-d'Or in the Province of Québec, Canada. The site is approximately 550 km north of Montreal and is serviced by road, rail and air. The property is centred near coordinates 291,964 m E and 5,365,763 m N, Zone 18N as located on the NTS map sheet 32C5. The NAL property consists of a contiguous group of 42 mineral titles (41 claims, 1 mining lease). All the claims are registered in the name of Sayona Québec Inc. for a total area of 1,49256 ha. The mining lease was granted to QLI on 29 May 2012, based on a Pre-Feasibility Study (PFS) filed at the time in support of the application to be granted such a lease. The mining lease has an initial term of 20 years, expiring on 28 May 2032. Forty mineral titles (39 claims and 1 mining lease) are no royalties applicable to any mineral substances that may eventually be extracted from the lands subject to the mining titles. Two mineral titles are subject to 1% Net Smelter Return (NSR) to Lise Daigle (90%)-Marc Dekeyser (10%). The company has obtained approval for deforestation of the future development of the current pit to the east. There are no known significant issues that are believed to materially impact the mine's ability to operate.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All claims are in good standing as of April 24, 2024.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic information is compiled from NI 43-101 Technical Reports prepared for the current owner and previous owners and discussion with NAL staff. Exploration started in 1942 by Sullivan Mining Group, followed by Quebec Lithium Corporation, Cambior Inc., Canada Lithium Corp., which merged later with Sirocco Mining Inc to form RB Energy Inc. Between 2008 and 2012, Canada Lithium Corp. carried out exploration work on the property. This work consisted of geological compilation, surface mapping, outcrop channel sampling, diamond drilling and metallurgical tests. All this work is detailed in the first NI 43-101 Report in 2012. In 2016, NAL carried out a surface drilling campaign to the east of the pit.
Geology	Deposit type, geological setting and style of mineralisation.	The project is located in the region of The Archean Preissac- La Corne syn- to post-tectonic intrusion that was emplaced in the southern Volcanic Zone of the

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
		Abitibi Greenstone Belt of the Superior Province of Québec. The rocks are split between granodiorite of the La Corne batholith, volcanics, and gabbro as well as the pegmatites dykes that mainly intrude the granodiorite and the volcanics.
		Volcanic rocks on the property are represented by dark green mafic metavolcanics and medium grey silicified intermediate volcanics. The mafic rocks are medium grey to dark grey-green, and cryptocrystalline to very fine grained. Both mafic and intermediate volcanic rocks are affected by moderate to strong pervasive silicification, minor chloritisation and patchy to pervasive lithium alteration.
		The granodiorite is medium grey to greenish grey, massive, coarse grained to porphyritic, and exhibits a salt-pepper appearance.
		The main mineral constituents are light grey to greenish white plagioclase (40-45 vol%), dark green to black amphibole, most likely hornblende (15-20 vol%), mica (20 vol%), represented by biotite and muscovite, grey quartz (10- 15%vol) and minor epidote, chlorite and disseminated sulphides.
		Three different types of facies of pegmatites dykes have been identified based on mineralogy and textures: PEG1, PEG2 and PEG3. The main differences between the three types of pegmatite dykes are the amount of spodumene in the dyke, the feldspar and quartz content, the texture of the pegmatite, and the presence or absence of zoning. Pegmatite mineralisation occurs as a swarm of dykes ranging in thickness from $1.5 \text{ m} - 60 \text{ m}$, striking NWSE and dipping subvertical to 50 degrees NE.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	New information on the NAL project drill holes is illustrated on Figures (plan views, sections, results tables) in this announcement. The coordinates in the Figures and Table are in metres in UTM NAD83 Zone 18 and elevation are above sea level. The selection of the most significant intercepts was
	easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception	based on visual appraisal of high metal factors (% Li20 content x length in m) within spodumene pegmatite intercepts. Table 2 in the main body text of this report includes collar dip and azimuth of the hole, down hole length and interception depth, and hole length. Depending on the azimuths and plunges of the selected boreholes, the drilled lengths are apparent and are not
	depth hole length.	true thicknesses.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the	All drill holes are reported.

Criteria	JORC Code explanation	Commentary
	understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Significant assay intercepts are reported as weighted average over total pegmatite intercepts (Table 2). Intercept selection is based on pegmatite lithology using a 0.25% Li ₂ O lower cut and maximum 4m of consecutive internal dilution with a minimum 2m interval and 0.6% + Li ₂ O intercept grade for inclusion. Any non-pegmatite lithology within an intercept has been treated as having nil grade. The selection algorithm has been applied to all drill results and may not represent true thickness.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Aggregation of Li ₂ O content to obtain the weighted average of a significant intercept is constrained within single pegmatite dykes.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent use.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Drilling is not always perpendicular to the dip of mineralisation and true widths are less than downhole widths. Lithium pegmatites corresponds to a series of stacked dykes of variable true thicknesses.
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Pegmatite intercepts (% Li2O over m) are expressed over down hole length (not over true width).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Maps and geological setting as well as drill hole collar locations are included in the main body text of this report and Figure 1.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be	All the assay results received and complete until the date is reported here.

Criteria	JORC Code explanation	Commentary
	practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The drill results reported are consistent with geological observations as described. No other meaningful exploration data is reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work includes further drilling to outline the geometry and extents to the lithium pegmatite dyke swarm identified to date. Exploration and step-out drilling is planned to extend the limits of the mineralized system and for potential discovery of additional pegmatite dykes.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to Figures in the release and previous exploration releases for drill hole information of the previously reported illustrations of drill holes and assays, and potential areas.