Significant North Stanmore Grade Increases in Heavy Rare Earths Terbium & Dysprosium

Victory Metals Limited (ASX:VTM) ("Victory" or "the Company") is pleased to report that simple, low-cost size-by-fraction separation (-10.8 μ m) on ore from the North Stanmore Project located in Western Australia has delivered substantial grade improvements in three critical elements directly linked to China's latest bans on defence and high-tech supply chains: **Terbium** (Tb), **Dysprosium** (Dy) and **Scandium** (Sc).

HIGHLIGHTS

- Simple beneficiation and straightforward -10.8 μm cyclosizing (no complex reagents or expensive circuits) materially enriches key critical elements
- Terbium (Tb) 53% increase, Dysprosium (Dy) 25% increase & Scandium (Sc) 100% increase
- All three elements are captured by the 1 December 2025 Chinese export ban where military end-use is implicated, underscoring their strategic importance and the need for non-Chinese supply
- Rapidly strengthening ex-China pricing since Victory's March Scoping Study1:
 - Terbium US\$3,600/kg
 - Dysprosium US\$850/kg²
- \bullet Pre-concentrating the -10.8 μm fines stream can reduce downstream tonnage and potentially lower reagent consumption

Victory's Chief Executive Officer and Executive Director Brendan Clark commented: "This is an incredible outcome at a time when the world's understanding of the importance of these critical and strategic minerals is rapidly growing. With a simple and low-cost size fractionation step, we've delivered significant grade increases in three of the world's most strategically important elements, Terbium, Dysprosium and Scandium.

As governments move to secure non-Chinese supply amid China's proposed export bans on these elements due to their important role in military, projects like North Stanmore become even more critical. Our results show we can concentrate the value upfront, potentially lowering operating costs and boosting payables."

 $^{^{1}\,\}text{Refer to ASX announcement dated 12 March 2025 titled "Outstanding North Stanmore Scoping Study Delivered"}$

² September 2025 Benchmark CIF Europe Dy2O3, 99-99.5% USD/tonne, Tb4O7, 99-99.9% USD/tonne

SIZE BY FRACTION BENEFICIATION

ALS Metallurgy Perth, Western Australia carried out simple wet classification to isolate the -10.8 μ m fraction by cyclosizing from a bulk sample composited from the North Stanmore resource area³. Grades were assayed on head and fraction products. No chemical upgrading or complex mineral separation was applied.

	Feed Grade	<10.8 µm	Percent
	(ppm)	Fraction (ppm)	Change (%)
Tb ₄ O ₇	8	13	>50.0
Dy ₂ O ₃	55	73	>33.3
Sc ₂ O ₃	46	92	>100.0
TREO	1484	2104	>41.8
HREO/TREO	0.43	0.41	<-3.2

HREO - Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3 and Y2O3

Cyclosizing the feed ore to a <10.8 μ m fraction resulted in a 42% increase in grade, a 50% increase in Tb₄O₇, a 33% increase in Dy₂O₃, and a 100% increase in Sc₂O₃. The HREO/TREO ratio remained essentially constant at 41%.

Results demonstrate intrinsic deportment of key critical elements into ultra fine particles. This ~73% decrease in mass to be processed provides a low-capex, low-opex front-end upgrade option that reduces throughput of less critical elements and gangue materials.

DEFENCE USES FOR TERBIUM, DYSPROSIUM & SCANDIUM Terbium (Tb)

- Essential component of in high-temperature permanent magnets (NdFeB) used in hypersonic missiles, fighter jet actuators, submarine systems, drones, radar, sonar and guidance systems.
- Provides thermal stability and strength for weapons grade magnetics.

Dysprosium (Dy)

- Critical additive to increase coercivity and temperature in permanent magnets, enabling them to operate under extreme heat and stress.
- Used in EV traction motors, defence aircraft, naval propulsion, precision guided munitions and missile defence systems.

Scandium (Sc)

- When alloyed with aluminium, produces lightweight, high-strength Al-Sc alloys for aerospace frames, fighter jets, naval vessels, and advanced defence structures.
- Improves fuel efficiency and durability in military aircraft.
- Also used in solid oxide fuel cells relevant to military energy resilience.

CHINA'S MINISTRY OF COMMERCE (MOFCOM) EXPORT CONTROL

On 9 October 2025, MOFCOM expanded China's export control regime on rare earths and related technologies.

³ Refer to ASX announcement dated 11 August 2025 titled "UPDATED MRE IDENTIFIES HREO/TREO RATIOS UP TO 83%"

Under the new measures (Announcement No. 61 of 2025), export licensing is now required for rare earths, downstream products and technologies that incorporate Chinese-origin material, with the rules explicitly prohibiting approvals for military end-uses. The regulations take effect from 1 December 2025, with immediate restrictions already in place for Chinese-origin items.

Terbium, Dysprosium and Scandium, all included on China's April 2025 controlled list, are now effectively off limits to foreign military applications, a position reaffirmed in the October update.

- Export licences are in principle denied for foreign military users, giving China unprecedented leverage over supply chains for strategic defence and high-tech materials.
- The updated rules extend extraterritorial reach with any product manufactured abroad containing more than 0.1% by value of Chinese-origin rare earths (including terbium, dysprosium, scandium, and others) will require a Chinese licence before export⁴.

This announcement has been authorised by the Board of Victory Metals Limited.

For further information please contact:

Brendan Clark
CEO and Executive Director
info@victorymetalsaustralia.com

Ben Creagh
Investor and Media Relations
benc@nwrcommunications.com.au

Victory Metals Limited

Victory is dedicated to the exploration and development of its flagship North Stanmore Heavy Rare Earth Elements (HREE), Scandium, Hafnium and Gallium Project located in the Cue Region of Western Australia. The Company is committed to advancing this world-class project to unlock its significant potential.

In August 2025, Victory Metals announced a robust Mineral Resource Estimate (MRE) for North Stanmore, totalling 320.6 million tonnes, with the majority of the resource, classified in the indicated category. This positions the North Stanmore Project as Australia's largest indicated clay heavy rare earth resource, underscoring its pivotal role as a future supplier of critical materials for the future.

North Stanmore Mineral Resource Estimate

Table 1: North Stanmore August 2025 MRE (≥330ppm TREO + Sc₂O₃ cut-off grade)

CLASSIFICATION	MRE TONNES (t)	TREOSc (ppm)	TREO (ppm)	HREO (ppm)	LREO (ppm)	HREO/TREO (%)	Sc₂O₃ (ppm)	Ga₂O₃ (ppm)
INDICATED	176,522,000	532	505	190	316	39	26	26
INFERRED	144,118,000	484	463	166	297	37	21	25
TOTAL	320,640,000	510	486	179	307	38	24	26

Numbers are rounded to reflect they are an estimate. Numbers may not sum due to rounding.

⁴ Refer to https://www.mofcom.gov.cn/zwgk/zcfb/art/2025/art_7fc9bff0fb4546ecb02f66ee77d0e5f6.html

Competent Person Statement - Professor Ken Collerson

Statements contained in this report relating to exploration results, Mineral Resource Estimate, metallurgy results, scientific evaluation, and potential, are based on information compiled and evaluated by Emeritus Professor Ken Collerson. Professor Collerson (PhD) Principal of KDC Geo Consulting and Director of Victory Metals Limited, and a Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM No. 100125), is a geochemist/geologist with sufficient relevant experience in relation to rare earth element and critical metal mineralisation being reported on, to qualify as a Competent Person as defined in the Australian Code for Reporting of Identified Mineral resources and Ore reserves (JORC Code 2012). Professor Collerson consents to the use of this information in this report in the form and context in which it appears.

No New Information – Mineral Resources

Information in this report relates to Mineral Resource Estimates and exploration results for the North Stanmore Project and is available to view on www.asx.com.au. Victory Metals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement, and that all material assumptions and technical parameters underpinning the estimates in the announcement continue to apply and have not materially changed.

APPENDIX 1: 2012 JORC CODE - TABLE 1

Section 1: Sampling Techniques and Data

	1. Jamping rechnique	3							
Criteria	JORC Code	Comme	entary						
	explanation		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	Nature and	•	The North St	tanmor	e drilling t	hat contrib	uted to the	July 2025 MRE	is shown as
	quality of		follows -		· ·			•	
	sampling (e.g. cut		Compiled by	Vear	Hole Type	Hole Prefix	Number	Total Depth (m)	Avg Denth (m)
	channels, random					MAFAC	45	2,726	61
	chips, or specific					NSE	96	5,080	53
	specialised			2022	AC	NSTAC	223	13,015	58
	industry standard		RSC			Subtotal	364	20,821	57
	measurement		1	2023	RC	23NSTRC	50	3,166	63
	tools appropriate				Subtot		414	23,987	58
	to the minerals			1		IF	226	13,540	60
	under		1		AC	NEX	10	187	19
	investigation,		1	2023		Subtotal	236	13,727	58
	such as downhole		MEC		DH	DD	11	764.9	70
	gamma sondes,				Sub	total	247	14,492	59
	or handheld XRF		1	2024	AC	AC	94	3,640	39
	instruments, etc.).			2025	AC	EX25AC	79	3,221	41
	These examples				AC		773	41,409	58
	should not be		All		RC		50	3,166	63
	taken as limiting		All		DH		11	764.9	70
	the broad				Total		834	45,339.90	56
	meaning of	•	(AC) holes w	ere dri	lled vertic	ally and spa	ced 100m	apart along 200	m - 400m
	sampling. • Include reference		spaced drill						
	 Include reterence to measures taken 	•	(AC) drilling	sample	es were co	llected as 1-	m sample	s from the rig cy	clone. Each
			sample was	placed	into large	green drill b	oags (900n	nmx600mm) for	temporary
	to ensure sample		storage onsi	te.	_	_		-	
	representivity and	•	Each sample	was th	nen split u	sing a 3-tier	(87.5% - 1	.2.5%) splitter ar	nd the split
Sampling	the appropriate calibration of any	 Each sample was then split using a 3-tier (87.5% - 12.5%) splitter and the split sample was placed into calico sample bags for transport to Perth. 							
techniques	measurement	•	Sample weig	thts an	d recoveri	es were rec	orded on s	ite and weighed	l 1.5 - 2.5 kg
teeninques	tools or systems		depending o	n the s	ample rec	overy from	the drill h	ole. The mean b	ulk sample
	used.		weight was 8	8.45kg.		-			
	 Aspects of the 	•	A reputable	comm	ercial trans	sport compa	any was us	ed to transport	the bags.
	determination of	•	A handheld	pXRF a	nalyzer (O	lympus Van	ta) was us	ed to determine	anomalous
	mineralisation		REO (Rare ea	arth ele	ement) ged	ochemistry (La, Ce, Pr,	Nd and Y) from	the 1-m
	that are Material		sample piles	. pXRF	reading ti	mes were 4!	secs ove	r 3 cycles for mu	ıltielement
	to the Public		and REO ass	ays. Th	ese result	s are not co	nsidered d	lependable with	out calibration
	Report. In cases		using chemic	cal ana	lysis from	an accredite	ed laborate	ory. However, th	neir integrity
	where 'industry		was checked	using	Certified F	REO -bearing	g geochem	ical standards.	
	standard' work	•	The handhel	ld pXRF	is used as	a guide to	the relativ	e presence or al	osence of
	has been done		certain elem	ents, i	ncluding R	EOs vectors	(La, Ce, Pi	r, Nd and Y) to h	elp direct the
	this would be		sampling pro	ogram.	Anomalou	ıs 1m samp	les were th	nen transported	to the assay
	relatively simple		lab for analy	sis by \	/ictory per	rsonnel. REC	o anomalis	m thresholds ar	e determined
	(e.g. 'reverse		by VTM tech	nical le	ead based	on historica	l data ana	lysis	
	circulation drilling	•	Victory atter	nded N	orth Stanr	nore to colle	ect the gre	en sample bag v	which was
	was used to		transported	by Vict	ory to Vic	tory's secur	e warehou	ise in Perth.	
	obtain 1 m						-	cluded regular o	-
	samples from		rig between	drill ho	oles using	compressed	air and w	eighing the bulk	sample to
	which 3 kg was				· ·	_	· ·	ted target weigh	
	pulverised to						-	m the rig cyclon	-
	produce a 30 g		=					ground surface	-
	charge for fire						-	rs. A hand-held t	
	assay'). In other				-	-		m piles. Compo	-
	cases, more			litholog	gy changes	. These con	nposite sar	mples weighed b	etween 2 and
	explanation may		3 kg.						
	be required, such								
	as where there is								

Criteria	JORC Code	Commentary
	explanation coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	
Drilling techniques	• Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc.).	 (AC) drilling uses a three bladed steel or tungsten drill bit to penetrate the weathered layer of loose soil and rock fragments. The drill rods are hollow and feature an inner tube with an outer barrel (similar to RC drilling). (AC) drilling uses small compressors (750 cfm/250 psi) to drill holes into the weathered layer of loose soil and fragments of rock. (RC) Drilling used a 5½" face sampling hammer with 1,350cfm/500 psi onboard compressor, which was occasionally supplemented with an additional booster (2,100cfm/1,000 psi). After drilling is complete, an injection of compressed air is unleashed into the space between the inner tube and the drill rods inside wall, which flushes the cuttings up and out of the drill hole through the rod's inner tube, causing less chance of cross-contamination. (AC) Drilling was performed by Seismic Drilling Pty Ltd and Orlando Drilling Pty Ltd, and the RC drilling was performed by Orlando Drilling Pty Ltd. The drill rigs were inspected daily by VTM personnel for safety and rig hygiene
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 The majority of samples were dry and sample recovery was variable, where excessive water flows were encountered during drilling. Representative percussion drillhole samples were collected as 1-metre intervals, with corresponding chips placed into chip trays and kept for reference at VTM's facilities. Measures taken to ensure sample representivity and recovery included regular cleaning of the rig between drill holes using compressed air and weighing the bulk sample to ensure reasonable sample return against an expected target weight.
Logging	Whether core and chip samples have been	 All percussion samples in the chip trays were lithologically logged using standard industry logging software on a notebook computer.

Criteria	JORC Code explanation	Commentary
	geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. • Whether logging is qualitative or quantitative in	 All (AC) samples have been logged for lithology, alteration, quartz veins, colour, fabrics. All (AC) samples have been analysed by a handheld pXRF. All samples were subjected to a NIR spectrometer for the identification of minerals and the variations in mineral chemistry to detect alteration assemblages and regolith profiles. All geological information noted above has been reviewed by a competent person as recognised by JORC. Logging is qualitative in nature. (AC) samples have been photographed.
	nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	90% of the sample intervals were logged.
	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 Diamond drilling was PQ core. Half core samples were taken, with the exception of when twin samples were collected and then the samples were quarter core.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	 Air core and RC sampling was undertaken on 1m intervals using a Meztke Static Cone splitter. In the Sampling techniques section above it mentions Riffle Splitter was used – This is contradictory Most 1-metre samples were dry and weighed between 1.5 and 2.5 kgs. Samples from the cyclone were placed into green drill bags in laid out in orderly rows on the ground. Using a hand-held trowel, 1m samples were collected from the one-metre drill bags after splitting of the sample. These samples were placed into calico bags and weighed between 1.5 and 2.5 kgs.
Subsampling techniques and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Samples were assayed by ALS Laboratories in Perth, a NATA Accredited Testing Laboratory. The assay methods used include: ME-4ACD81: Four acid digestion followed by ICP-AES measurement ME-MS81: Lithium borate fusion followed by acid dissolution and ICP-AES measurement ME-ICP06: Fusion decomposition followed by ICP-AES measurement REOs were all analysed by ME-MS81 (four acid digestion followed by ICP-AES measurement) with results returned in their elemental form. Elements were then converted to oxides using the appropriate stoichiometric conversion factors. Base metals are assayed by ME-ICP06: Fusion decomposition. Non-ferrous metals are assayed by ME-4ACD81: Four acid digestion.
	 Quality control procedures adopted for all subsampling stages to maximise 	 Using a riffle splitter, 1m composite samples were collected from the individual sample bags. Quality control of the assaying comprised the collection of a bulk repeat sample every hole, along with the regular insertion of industry (OREAS) standards (certified reference material) every 20 samples and blanks (beach sand) every 50 samples. The repeat sample was collected by passing the bulk reject obtained

Criteria	JORC Code explanation	Commentary
	representivity of samples. • Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/secondhalf sampling. • Whether sample sizes are appropriate to the grain size of the material being	from the first split stage through the riffle splitter once more. The repeat sample is not a duplicate. • Fourteen twin samples of quarter core (diamond PQ) were compared to the original sample for each REO element and results were found to be acceptable. • Composite samples weighed between 1 and 2 Kg's. • Sample sizes are considered appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	sampled. • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 All samples were analysed in the field using a handheld Olympus Vanta XRF unit to identify geochemical thresholds. These results are not considered dependable without calibration using chemical analysis. They were used as a guide to the relative presence or absence of certain elements, including REOs to help guide the drill program and which samples were submitted for analytical analysis. All pXRF anomalous samples were sent to ALS Wangara in Perth for analysis. Over time the mineralised sample criteria has evolved from an initial sampling threshold value of La+Ce+Nd+Pr+Y > 200ppm (for the RSC MRE), to Ce>30ppm (for the post RSC to July 2024 MRE), and most recently Y>30ppm (POST July 2024 to January 2025 MRE). Samples were submitted for sample preparation and geochemical analysis by ALS in Wangara, Perth, a NATA accredited laboratory. All samples were crushed and pulverized to generate a pulp aliquot sample with 95% of the aliquot sample passing 75µ (ALS methods CRU-31, PUL-31). Aliquots were analysed using the following methods:
	• For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters	

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 analysis from an accredited laboratory. However, their analytical accuracy was checked using REO -bearing geochemical standards. The pXRF results were not used for estimation. Sample weights were measured for 174 of the AC drillholes, and recovery was measured for 7 of the diamond drillholes. Sample recovery for the diamond drillholes recovery was 100 %. Based on the information available, sample recovery is acceptable for the diamond holes. The discrepancy between the target weight and the measured weight for the air-core samples indicates potential for bias, however, there may have been an issue with the target weight, and this should be reassessed. Assay analytical precision was established by laboratory repeats and was deemed acceptable to the Competent Person/s. The overall performance of standards was deemed to be acceptable, see Error! Reference source not found It was noted that La, Pr, Ce and Eu in the CRM OREAS464 have expected values above the detection limits of the lab method ME_MS81. It was noted that Co and Ni in the CRMs OREAS461 and OREAS464 are over reported against the expected values using the lab method ME_4ACD81. It was noted that Cu and Sc in the CRM OREAS464 are under reported against the expected values using the lab method ME_4ACD81.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	·

Operation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay as part of their no QAQC procedures Discuss any adjustment to the content of the conten	Criteria	JORC Code explanation	Commentary		
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible/w: Discuss any adjustment to assay data. REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible/w: REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible/w: REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible/w: REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible/w: REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible/w: REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible/with provible of REOs. REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible for REOs. The stoichiometric conversion factors used are provible for REOs. The stoichiometric conversion factors used are provible for REOs. The stoichiometric conversion factors used are provible for REOs. REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric conversion factors used are provible for REOs. The stoichiometric conversion factors used are provible for REOs. The stoichiometric conversion factors used are provible for REOs. REO assay results were adjusted to conver		- CAPIGITATION	QQ plots were prepared between the percussion and diamond assays paired 5m. with good correlation between the two drillhole types.	d at	
Discuss any adjustment to assay data. REO assay results were adjusted to convert elemental values to the oxide equivalent for REOs. The stoichiometric coxide conversion factors used are provise below: Element		primary data, data entry procedures, data verification, data storage (physical and electronic)	ALS laboratories routinely re-assayed anomalous assays as part of their norm	mal	
Ce (Cerium) CeO; 1.2284 Dy (Dysprosium) Dy;O; 1.1477 Er (Erbium) Er;O; 1.1435 Eu (Europium) Ei;O; 1.1526 Ga (Gallium) Ga;O; 1.526 Ho (Holmium) Ho;O; 1.1526 Ho (Holmium) Ho;O; 1.1455 La (Lanthanum) La;O; 1.1728 La (Lanthanum) La;O; 1.1728 La (Lanthanum) La;O; 1.1664 Pr (Praseodymium) Pr;O; 1.2882 Se (Scandium) Se;O; 1.5338 Sm (Samarium) Se;O; 1.1538 Sm (Samarium) Th;O; 1.1762 Tm (Thalium) Th;O; 1.1762 Tm (Thalium) Th;O; 1.1421 Y (Vitrium) YO; 1.2699 Yb (Yiterbium) Yb;O; 1.1387 ** Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. ** Specification of the grid system used.** ** Coulity and adequacy of topographic control.** ** Data spacing of reporting of Exploration Results.** ** Data spacing for reporting of Exploration Results.** ** Data spacing and distribution ** Whether the data spacing, and distribution ** Given the nature of the exploration programs, the spacing of the exploration filling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate for understanding the exploration potential and the drilling is appropriate fo		 Discuss any adjustment to 	equivalent for REOs. The stoichiometric conversion factors used are provide	∍d	
Dy (Dysprosium) Dy-Op 1.1477			Element Oxide Element to stoichiometric oxide conversion factor	or	
Er (Erbium) Eis-O ₂ 1.1435			Ce (Cerium) CeO ₂ 1.2284		
Eu (Europium) Eu-O ₂ 1.1579			Dy (Dysprosium) Dy_2O_3 1.1477		
Ga (Galdinim) Ga-O ₂ 1.1342					
Gal Gadolinium) Gd-O ₂ 1.1526					
Ho (Holmium) Ho ₂ O ₃ 1.1455 La (Lanthanum) La ₃ O ₅ 1.1728 Lu (Lautetium) Lu ₂ O ₃ 1.1371 Nd (Neodymium) Nd ₂ O ₃ 1.1664 Pr (Praseodymium) Pr ₂ O ₃ 1.2082 Sc (Scandium) Sc ₂ O ₃ 1.5338 Sm (Samarium) Sm ₃ O ₃ 1.1596 The (Terbium) Th ₂ O ₃ 1.1421 Y (Ytrium) Y ₂ O ₃ 1.2699 Yb (Ytterbium) Th ₂ O ₃ 1.1421 Y (Yttrium) Y ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.1387 Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Location of data points					
La (Lanthanum) La ₂ O ₅ 1.1728 Lu (Lutetium) La ₉ O ₅ 1.1371 Nd (Neodymium) Nd ₂ O ₅ 1.1664 Pr (Praseodymium) Pr ₆ O ₁₁ 1.2082 Sc (Scandium) Sc ₂ O ₅ 1.5338 Sm (Samarium) Sm ₂ O ₅ 1.1596 Tb (Terbium) Tb ₂ O ₅ 1.1762 Tm (Thulium) Tm ₂ O ₅ 1.1421 Y (Yttrium) Y ₂ O ₇ 1.1421 Y (Yttrium) Y ₂ O ₇ 1.1421 Y (Yttrium) Y ₂ O ₇ 1.1387 • Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. • Data spacing for reporting of Exploration Results. • Data spacing and distribution • Whether the data spacing, and whether the data spacing, and distribution Location of destribution Location of destribution • Columnation and Destrict and Columnation and Destruction and Destrict and Columnation and Destrict]		/ 23	_	
Lu (Lutetium) Lu-O ₁ 1.1371 Nd (Neodymium) Nd ₂ O ₂ 1.1664 Pr (Prascodymium) Pr ₂ O ₁ 1.2082 Sc (Scandium) Sc ₂ O ₁ 1.1596 Tb (Terbium) Tb ₂ O ₂ 1.1762 Tm (Thulium) Tm ₂ O ₃ 1.1421 Y (Yttrium) Y ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.1387 • Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. • Data spacing for reporting of Exploration Results. • Data spacing and distribution • Whether the data spacing, and where the data spacing, and distribution • Given the nature of the exploration programs, the spacing of the exploration protential and t					
Nd (Neodymium) Nd-O ₃ 1.1664 Pr (Prascodymium) Pr ₈ O ₁₁ 1.2082 Sc (Scandium) Sc ₂ O ₃ 1.5338 Sm (Samarium) Sm ₂ O ₃ 1.1596 Tb (Terbium) Tb ₂ O ₇ 1.1762 Tm (Thulium) Tm ₂ O ₃ 1.1421 Y (Yttrium) Y ₂ O ₃ 1.1827 Y (Yttrium) Y ₂ O ₃ 1.1827 Y (Yttrium) Y ₂ O ₃ 1.1827 Y (Yttrium) Y ₂ O ₃ 1.1837 Silvential accuracy of 4/-5 m. Elevation Surveyed by handheld GPs with a horizontal accuracy of 4/-5 m. Elevation Caller and downhole surveyes by handheld GPs with a horizontal accuracy of 4/-5 m. Elevation Caller and downhole surveyes Caller and downhole surveyes Caller and downhole surveyes Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Location of data points Location Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill intervals (99%) were less than a drepth of 100m. Caller and inclined (8%). The majority of drill inter				\dashv	
Pr (Praseodymium) Pr ₈ O ₁₁ 1.2082 Sc (Scandium) Sc ₂ O ₃ 1.5338 Sm (Samarium) Sm ₂ O ₃ 1.1596 Tb (Terbium) Tb ₂ O ₂ 1.1762 Tm (Thulium) Tm ₂ O ₃ 1.1421 Y (Yttrium) Y ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.1387 Sim (Samarium) Sm ₂ O ₃ 1.1387 Sim (Samarium) Yb ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.2899 Yb (Ytterbium) Yb ₂ O ₃ 1.3887 Sim (Samarium)				_	
Sc (Scandium) Sc ₂ O ₃ 1.1596 Sm (Samarium) Sm ₃ O ₃ 1.1596 Tb (Terbium) Tb ₂ O ₇ 1.1762 Tm (Thulium) Tm ₂ O ₃ 1.2699 Yb (Ytterbium) Y ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.1887 In (Samarium) Sm ₃ O ₃ 1.1596 The (Terbium) Tm ₂ O ₃ 1.1421 Y (Yttrum) Y ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.2699 Yb (Ytterbiu				_	
Sm (Samarium) Sm ₂ O ₃ 1.1596 Tb (Terbium) Tb ₀ O ₇ 1.1762 Tm (Thulium) Tm ₂ O ₃ 1.2699 Y (Yttrium) Y ₂ O ₃ 1.2699 Y (Yttrium) Y ₂ O ₃ 1.2699 Yb (Yttrebium) Y ₂ O ₃ 1.269 Yb (Yttrebium) Yo (Yttrebiu					
Tb (Terbium) Tb ₂ O ₇ 1.1762 Tm (Thulium) Tm ₃ O ₃ 1.1421 Y (Yttrium) Y ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.2699 Yb (Ytterbium) Yb ₂ O ₃ 1.1387 • Accuracy and quality of surveys used to locate drillholes (collar and downhole surveyed by handheld GPS with a horizontal accuracy of +/- 5 m. Elevation (2) were assigned from the topography surface where no DGPS data was available. • There were no downhole surveys completed. Drillholes were both vertica and inclined (8%). The majority of drill intervals (99%) were less than a dr depth of 100m. • Specification of the grid system used. • Quality and adequacy of topographic control. • A three second SRTM Digital Elevation Model was used to represent the topographic adjusted by using the DGPS surveyed collar coordinates to model a more accurate topographical surface. It is recommended that a LiDAR based DE used in future. • Data spacing or reporting of Exploration Results. • Whether the data spacing, and • Whether the data spacing, and • Given the nature of the exploration programs, the spacing of the exploration potential and the					
			Tb (Terbium) Tb_4O_7 1.1762		
Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys) used to locate drillholes (collar and downhole surveys) used in future. Location of data points Collar adequacy of topographic control.					
Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Data spacing and degraded by Control. Data spacing and by Mether the data spacing, and distribution Secure assigned from the topography surface where no DGPS data was available. There were no downhole surveys completed. Drillholes were both vertica and inclined (8%). The majority of drill intervals (99%) were less than a dring depth of 100m. All coordinates are in GDA94 Zone 50. There were no downhole surveys completed. Drillholes were both vertica and inclined (8%). The majority of drill intervals (99%) were less than a drillholes were surveyed by nandheld GPS with a horizontal accuracy of +/- 5 m. Elevation of (2) were assigned from the topography surface where no DGPS data was available. There were no downhole surveys completed. Drillholes were both vertica and inclined (8%). The majority of drill intervals (99%) were less than a drillholes were surveyed by nandheld GPS with a horizontal accuracy of +/- 5 m. Elevation of 20 were less than a drillholes were surveyed by nandheld GPS with a horizontal accuracy of 10 were assigned from the topography surface where no DGPS data was available. There were no downhole surveys completed. Drillholes were surveyed by nandheld GPS with a horizontal accuracy of 10 were less than a drillholes were surveyed by nandheld GPS with a horizontal accuracy of 20 were less than a drillholes were surveyed by nandheld GPS with a horizontal accuracy of 20 were less than a drillholes were surveyed by nandheld GPS with elemants available. There were no downhole surveys completed. Drillholes were surveyed by nandheld GPS with elemants available. There were no downhole surveys completed. Drillholes					
reporting of Exploration Results. • Whether the data distribution spacing, and distribution reporting of Exploration Results. • Given the nature of the exploration programs, the spacing of the explorat drilling is appropriate for understanding the exploration potential and the		quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic	 surveyed by handheld GPS with a horizontal accuracy of +/- 5 m. Elevation v (Z) were assigned from the topography surface where no DGPS data was available. There were no downhole surveys completed. Drillholes were both vertical (and inclined (8%). The majority of drill intervals (99%) were less than a drill depth of 100m. All coordinates are in GDA94 Zone 50. A three second SRTM Digital Elevation Model was used to represent the topographical surface sourced from Geoscience Australia. The topography wadjusted by using the DGPS surveyed collar coordinates to model a more accurate topographical surface. It is recommended that a LiDAR based DEM 	values (92%) I hole was	
distribution is identification of structural controls on the mineralisation. In areas of close sufficient to spaced drilling the spacing demonstrates grade and geological continuity	and	reporting of Exploration Results. • Whether the data spacing, and distribution is	 The drillhole spacing at North Stanmore ranges from 50 x 50m to 250 x 100r Given the nature of the exploration programs, the spacing of the exploration drilling is appropriate for understanding the exploration potential and the identification of structural controls on the mineralisation. In areas of closer 	on	

Criteria	JORC Code explanation	Commentary
	degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	increases, grade and geological continuity can be implied and has been classified as an Inferred Mineral Resource. Areas where the drillhole spacing is such that grade and geological continuity cannot be implied, have been excluded from the Mineral Resource. The applied Mineral Resource classification is commensurate with the grade continuity demonstrated.
	 Whether sample compositing has been applied. 	 Percussion samples were collected as 1.0 m samples. Core was collected at a nominal 1.0 m samples. Air core samples were collected as 1.0 m and 4.0 m samples.
Orientation	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Mineralisation is sub horizontal, as such the vertical drillholes are suitable to test mineralisation thickness. It is concluded from aerial magnetics that the mineralisation trends 010°-030°. Air core drilling was vertical as the mineralisation is interpreted to be sub parallel to the regolith profile. RC percussion drilling was angled. Downhole widths of mineralisation are known with percussion drilling methods to +/- 1 metre.
of data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Mineralisation is sub-horizontal. Azimuths and dips of drilling was designed to intersect the strike of the rocks at right angles.
Sample security	The measures taken to ensure sample security.	 All samples were packaged and managed by VTM personnel. Larger packages of samples were couriered to Core from Cue by professional transport companies in sealed bulka bags. Unused samples from the percussion drilling are stored at Victory's secure warehouse in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 MEC conducted an audit of the project data and the historic MRE in April of 2024. The findings were as follows - Several validation issues have now been corrected in the drillhole database, and the data is of sufficient quality to inform an Indicated and Inferred mineral resource. There are no downhole surveys so there is a risk of the hole paths deviating from planned, particularly with the deeper drillholes >100m which account for less than 1% of all drilled metres. MEC completed a further review upon the completion of the 2025 drilling which focussed on the adequateness of lithological logging procedures in order to produce accurate bottom of hole (bedrock) lithology map and to qualify the rock hardness to allow a rock model to be generated.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	listed in the preceding section also	
Criteri a	JORC Code explanation	Commentary
Mineral teneme nt and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The North Stanmore REO Project MRE comprises ten tenements E20/0544, E20/0871, E20/0971, E20/1016, E20/2468, E20/2469, P20/0543, P20/2007, P20/2153, and P20/2403. All tenements are held by Victory Cue Pty Ltd, a wholly owned subsidiary of Victory Metals Ltd. MEC has verified that at the time of the report date that all tenements are currently in good standing. Native Title claim WC2004/010 (Wajarri Yamatji #1) was registered by the Yaatji Marlpa Aboriginal Corp in 2004 and covers the entire project area, including Coodardy and Emily Wells.
Explorat ion done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area has been previously explored by Harmony Gold (2007-2010) in JV with Big Bell Ops, Mt Kersey (1994-1996), and Westgold (2011), and Metals X (2013). Exploration by these companies has been piecemeal and not regionally systematic. Harmony Gold intersected 3m @ 2.5 g/t Au and 2m @ 8.85 g/t Au in the Mafeking Bore area but did not follow up these intersections. Other historical drill holes in the area commonly intersected > 100 ppb Au. There has been no historical exploration for REOs in the tenement.
Geology	Deposit type, geological setting and style of mineralisation	 Victory's tenements lie north of Cue, within the centre of the Murchison Province, which comprises the Archaean gneiss-granitoid-greenstone north-western Yilgarn Block. The Archaean greenstone belts in the Murchison Province, the Warda Warra and Dalgaranga greenstone belts, the southern parts of the Meekatharra-Mount Magnet and Weld Range belts are dominated by metamorphosed supracrustal mafic volcanic rocks, as well as sedimentary and intrusive rocks. Thermo-tectonism resulted in development of large-scale fold structures that were subsequently disrupted by late faults. The greenstone belts were intruded by two suites of granitoids. The first, most voluminous suite, comprises granitoids that are recrystallised with foliated margins and massive cores, typically containing large enclaves of gneiss. The second suite consists of relatively small, post tectonic intrusions. Two large Archaean gabbroid intrusions occur south of Cue. These are the Dalgaranga-Mount Farmer gabbroid complex in the southwest, and the layered Windimurra gabbroid complex in the southwest, and the layered Windimurra gabbroid complex in the southwest. The North Stanmore alkaline intrusion, north of Cue, was not recognised on regional geological maps. The petrological and geochemical data indicate that it is post-tectonic and post Archean in age. Similar alkaline intrusions in the vicinity of Cue are interpreted to be related to the early Proterozoic plume track responsible for alkaline magmatism, that extends in a belt from Mt Weld through Leonora to Cue. Mafic and ultramafic sills are abundant in all areas of the Cue greenstones. Gabbro sills are often differentiated with basal pyroxenite and/or peridotite and upper leucogabbric units.

Criteri a	JORC Code explanation	Commentary
Drill hole Informat ion	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is	 The greenstones are deformed by large scale fold structures which are dissected by major faults and shear zones which can be mineralised. Two large suites of granitoids intrude the greenstone belts. The western margin of the project has a signature reflecting a rhyolite, rhyolite-dacite and/or dacitic rock (predominantly acid or felsic rock type). This coincides with an area of elevated TREO/LREO/HREO grades and greater average mineralisation thickness. The deposit type is regolith-hosted REO mineralisation overlying the North Stanmore alkaline intrusion. The REO mineralisation at North Stanmore is predominantly hosted within a relatively flat-laying saprolite-clay horizon and partially extends into the Sap rock. The Saprolite is covered by 0–36m of unconsolidated colluvium. The saprolite thickness ranges from 14–58m, and overlies a basement of granite, mafic rocks, and other felsic rocks. Mineralogy studies demonstrate that the REOs are mainly hosted by sub-20-µm phases interpreted to be churchite (after xenotime) and rhabdophane (after monazite). The mineralisation is hosted in the saprolite zone of the weathering profile, between the basement granite and surface colluvium. Eight hundred and thirty four (834) drill holes for 41,409m, 50 Reverse Circulation (RC) drillholes for 41,409m, 50 Reverse Circulation (RC) drillholes for 3,166m, and 11 diamond drill holes for 764.9m. Drillhole depths range from 3m to 222m. All drillholes were completed by Victory from 2022 to 2025. Drillhole intersections are reported in APPENDIX 2. Drillhole intersections are reported in APPENDIX 3.
Data aggrega tion methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. • Where aggregate intercepts incorporate short lengths of highgrade results and longer lengths	 No top cuts were applied as few extreme values were identified. Samples were composited to 1 m intervals based on the dominant raw sample length. A geological cutoff grade of 150ppm TREO + Sc representing the on-set of mineralisation was used during interpretation to separate mineralised from unmineralised material for the MIN domain. A high-grade (HGMIN) domain was modelled above a TREO + Sc 600ppm cut-off.

Criteri a	JORC Code explanation	Commentary
	of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	All MRE were reported above an economic cut-off grade of 330ppm TREO + Sc.
Relation ship between minerali sation widths and intercep t lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The clay regolith hosted REO mineralisation is interpreted to be sub horizontal. 88% of the drillholes are vertical, and the remaining are drilled at a dip of -60°. As such intersections approximate the true width of mineralised lodes.
Diagram s	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views	Drillhole collars and tenements are shown below — MONCYLED MARKETS M
Balance d reportin g	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All exploration results have been reported above a 150ppm TREO + Sc cut-off.
Other substant ive explorat ion data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk	Metallurgical testwork: Three stages of metallurgical test work have been completed on the North Stanmore project, focusing on beneficiation, and on leach test work to establish potential recoveries Core Resources ("Core") in Brisbane completed Stage 3 test work including beneficiation test work in March of 2024 and reported an increase, to the

Criteri a	JORC Code explanation	Commentary
	density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	Rare Earth Element ("REO") feed grade of 63% by rejecting the +53µm feed material from across all samples. Core also completed leach test work on the beneficiated material. The Leach test work program involved Core conducting diagnostic metallurgical testing on a
		composite blend of the beneficiated samples which had a head grade of 1,283 ppm Total Rare Earth Oxide plus Yttrium (TREO). This was sourced from 23 samples and 13 drill holes from North Stanmore. The initial atmospheric leach test work program was trialled at elevated temperatures and variable leaching conditions compared to previous work. These test conditions yielded high recoveries of Pr (94%), Nd (94%) and valuable and critical heavy rare earth elements Tb (91%), and Dy (92%) with a combined recovery of 93% Magnet Rare Earth Elements ("MREO"). Additionally, Scandium oxide (Sc ₂ O ₃) recoveries of (50%) were achieved. These assays were conducted by Australian Laboratory Services (ALS) Brisbane. The objective of the diagnostic test work was to recover REO and Sc ₂ O ₃ from the beneficiated sample using alternative conditions to previous metallurgical programs, that successfully demonstrated increased extractions at higher temperature (from 25°C to 100°C).
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further metallurgical testwork will focus on further optimization of the leaching of the upgraded samples and the generation of Mixed Rare Earth Carbonate (MREC) for potential off takers. Additional variability leach testing of individual samples is also planned. Variability leach testwork will inform geo-metallurgical variability across the North Stanmore project. Further metallurgical test work will also focus on the most optimized leaching conditions and removal of gangue materials against the higher rare earth extractions that can be achieved. A Prefeasibility study is currently in progress.

Section 3: Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. 	 An initial Database was supplied to MEC by RSC, the database was then integrated with newly acquired data by MEC for a data audit before commencing an MRE. All validation issues relating to data were identified and remedied prior to MRE.
integrity	Data validation procedures used.	 Drillhole collar, downhole survey, assay, geology, and recovery data were imported into Micromine software. The imported data was then compared to the database values with no discrepancies identified. The data was then desurveyed in Micromine and reviewed spatially with no discrepancies identified.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Dean O'Keefe, the Competent Person for this Mineral Resource Estimate visited the North Stanmore project site on May 30, 2024.
5.10 7.5.13	 If no site visits have been undertaken indicate why this is the case. 	A site visit has been conducted by Dean O'Keefe.
	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	 Confidence in the interpretation of the transported colluvium that truncates the saprolite is commensurate with the drillhole spacing and ranges from low to moderate confidence. The mineralisation is hosted within the saprolite, with some mineralisation extending into the bedrock. There is reasonable confidence in the interpretation of the saprolite commensurate with the available drilling.
Geological interpretati	 Nature of the data used and of any assumptions made. 	Surface AC, RC, as well as diamond drilling, have been used to inform the MRE.
on	 The effect, if any, of alternative interpretations on Mineral Resource estimation. 	 The potential for alternate interpretations at a prospect scale is considered unlikely. However, there is a likelihood of variation at the local scale, and this has been reflected in the Mineral Resource classification.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The MRE has been interpreted as mineralised domains (MIN) representing the on-set of REO mineralisation at 150ppm TREO + Sc₂O₃, and high-grade pods (HGMIN) within the mineralised domains where the mineralisation grade is greater than 600ppm TREO + Sc₂O₃.
Dimension s	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The North Stanmore deposit extends over 8km across and along strike and is around 70m thick; mineralisation varies between 4m to 60m in true thickness. The southwestern part of the deposit is thicker than the remainder of the deposit.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of	 The final interpretational wireframes and estimation work was completed using Micromine v2025.5. The estimation was constrained by hard domain boundaries generated from mineralisation wireframes. The available samples were coded by domains (HGMIN, MIN), and 1.0m composites were created honouring these boundaries. The REO analyte grades were estimated using ordinary kriging of the 1.0m composite grades each of the individual REO grades: HREO, and LREO.

Criteria	JORC Code explanation	Commentary		
	computer software and parameters used.	 The estimation for credit elements was completed using Inverse Distance Cubed for Cu, Ni, Co, Hf, Sc₂O₃, and Ga₂O₃. There were no extreme values observed that required topcuts to be applied. For estimation purposes, all boundaries were treated as hard boundaries. The primary search was 500 m in the direction of maximum continuity, 400 m along the intermediate direction of continuity, and 25 m in the minor direction of continuity. Up to 5 samples per octant sector (maximum number of informing samples was 40 samples) were used. The secondary search was 1,000 m in the direction of maximum continuity, 800 m along the intermediate direction of continuity, up to 5 samples per octant sector (maximum of 40 informing samples) was used. The third search was 1,500 m in the direction of maximum continuity, 1,200 m along the intermediate direction of continuity, and 75m in the minor direction of continuity, with a maximum of 150 informing samples (no octant search applied). The maximum distance for extrapolation for the Inferred Mineral Resource was 1,500 m. Values were calculated for HREO, LREO, and TREO + Sc by summing the respective REO estimated grades and Scandium oxide for each OBM block. 		
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	 The June 2025 MEC MRE was compared to the January 2025 MEC MRE's. The January 2025 MRE compared to the July 2025 MRE has the same Indicated Mineral Resources tonnage of 176.5Mt, however, the TREOSc ppm grade has increased from 503 to 532 ppm. The January 2025 Inferred Mineral Resources tonnage has increased from 70.9Mt to 144.1Mt for the July 2025 MRE. The Inferred Mineral Resources TREOSc ppm grade has decreased from 561 to 484 ppm. The January 2025 Total Mineral Resources tonnage has increased from 274.5Mt to 320.6Mt for the July 2025 MRE. The Total Mineral Resources TREOSc ppm grade has changed from 520 to 510 ppm. An economic cutoff grade of TREO + Sc ≥330ppm was applied to the MEC June 2025 MRE due to scandium oxide, being a potential credit element along with the presence of hafnium, nickel, cobalt, and copper. The June 2025 MEC Indicated and Inferred Mineral Resource for the North Stanmore Project is estimated at ~321 Mt of REEbearing saprolite and bedrock at 510 ppm TREO + Sc2O3, for 163,660 tonnes of contained TREO + Sc2O3. The MEC Mineral Resource is not limited to tenement E20/871. 		
	 The assumptions made regarding recovery of by- products. 	 Test work has demonstrated that Scandium is recoverable and may become a byproduct. Test work has demonstrated that Gallium is recoverable and may become a byproduct. Available metallurgical test work has demonstrated that likely processing will be able to recover significant proportions of Scandium, Gallium, Nickel, Cobalt, Copper and Hafnium. 		
	 Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). 	 Test work completed by Victory Metals included analysis of Uranium (U) and Thorium (Th) levels across the project. The assessed levels of uranium and thorium were very low values across the project. Due to the low values within both ore and waste the uranium and thorium were not estimated, 		

Criteria	JORC Code explanation	Commentary
		however, both values may be estimated in the future if required for integration into processing studies. Waste U Max = 24ppm, Mean = 1.7ppm Th Max = 67ppm, Mean = 7.9ppm
		MIN Domain (≥150ppm TREO + Sc ₂ O ₃) U Max = 12ppm, Mean = 2.11ppm Th Max = 61ppm, Mean = 7.15ppm HGMIN Domain (≥600ppm TREO + Sc ₂ O ₃) U Max = 11ppm, Mean = 1.8ppm Th Max = 68ppm, Mean = 6.9ppm • Metallurgical recovery to date of deleterious Uranium (U) 2.4ppm and Thorium (Th) 5ppm are less than average abundances in the upper continental crust (U) 3ppm (Th)
		 Scandium oxide, Gallium oxide, Hafnium, Copper, Cobalt, and Nickel were estimated within this MRE and are considered significant. Sulphur (S) has not been analysed by the laboratory and cannot currently be estimated.
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	 Drillhole spacing is consistent and varies in the East and North-East of the deposit. Nominal drillhole spacing is 50 x 50m expanding to ~250 north by 100m east across strike. The block size used for the estimation 50m east x 50m north and 1 mRL, with sub celled blocks to 25m east x 25m north and 0.5mRL.
	 Any assumptions behind modelling of selective mining units. 	 No support correction was applied to allow for selective mining units at this stage of the project life.
	Any assumptions about correlation between variables	 No assumptions were made regarding correlations between variables.
	Description of how the geological interpretation was used to control the resource estimates.	 A geological cutoff grade of 150ppm was chosen to distinguish the mineralised material from poorly unmineralised material. The mineralised domain MIN was then Interpreted at 150ppm TREO Sc₂O₃ reflecting the on-set of mineralisation. The interpretation was carried out in section lines and a high-grade mineralised domain HGMIN was delineated at 600ppm TREO + Sc₂O₃.
	 Discussion of basis for using or not using grade cutting or capping. 	Few extreme values were present and no topcuts were applied.
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	 The OBM estimate was validated, validation approaches included: Visual checks for composite grades versus estimated block grades. Comparison of global mean grades of composites versus blocks for each Domain. This check ensures that the global statistics for each estimated variable represent the composited statistics in that domain. Histograms of composites versus block distributions to check preservation of the distribution postestimate. Swath plots (also known as trend plots) to compare the spatial variation of grades between composites and blocks across the block model.

Criteria	JORC Code explanation	Commentary
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the	 On completion of the OBM, checks were conducted for overlapping or missing blocks, and none were found. Primary relevant elements of interest were estimated individually (Dy₂O₃, Er₂O₃, Eu₂O₃, Gd₂O₃, Ho₂O₃, La₂O₃, Lu₂O₃, Nd₂O₃, Pr₆O₁₁, Sm₂O₃, Tb₄O₇, Tm₂O₃, Y₂O₃, Yb₂O₃, Sc₂O₃, Ga₂O₃). Tonnages were estimated on a dry basis.
	method of determination of the moisture content.	
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The MRE was reported at a 330ppm TREO + Sc₂O₃ cutoff grade. The RSC August 2023 MRE economic cut-off grade was ≥400 ppm TREO, inclusive of Yttrium. The economic cut-off grade for the June 2025 MEC MRE was ≥330ppm TREO + Sc₂O₃, inclusive of Yttrium oxide and Scandium oxide. Asra Minerals Limited (ASX: ASR) reported in an ASX Announcement, 16 April 2024, a maiden JORC (2012) Mineral Resource Estimate (MRE) for its 100%-owned Yttria Rare Earth Element (REE) deposit, located on its Mt Stirling Project near Leonora in the northern Goldfields region of Western Australia. The MRE was reported above an economic cut-off grade of 200 ppm TREO, inclusive of Yttrium, minus CeO₂. Asra Minerals Ltd commented that this cut-off grade was selected based on the evaluation of other clay hosted rare earth Mineral Resources.
Mining factors or assumption s	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The Competent Person/s deem that there are reasonable prospects for eventual economic extraction using open pit mining methods as a function of: The relative shallow depth of the mineralisation and presence of loosely consolidated transported Colluvium above the mineralisation. Proximity to significant existing infrastructure (located adjacent to the Gt Northern Highway and the township of Cue). Future pit optimisation studies will confirm the designation of the blocks for RPEEE.
Metallurgi cal factors or assumption s	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this	 Extensive metallurgical studies by Core metallurgy regarding the beneficiation and extraction of Ce, Dy, Er, Eu, Ga, Gd, Ho, La, Lu, Mn, Nd, Pr, Sc, Sm, Tb, Th, Tm, U, Y, and Yb have been completed. The leach test work program involved Core conducting diagnostic metallurgical testing on a composite blend of the beneficiated samples which had a head grade of 1,283 ppm Total Rare Earth Oxide (TREO). This was sourced from 23 samples and 13 drill holes from North Stanmore. The initial atmospheric leach test work program was trailed at elevated temperatures and variable leaching conditions compared to previous work. These test conditions yielded high recoveries of Pr (94%), Nd (94%) and valuable and critical heavy rare earth elements Tb (91%), and Dy (92%) with a combined recovery of 93% Magnet Rare Earth Elements ("MREO").

Criteria	JORC Code explanation		Con	nmentary	
	should be reported with an explanation of the basis of the metallurgical assumptions made.	 Additionally, Scandium oxide (Sc₂O₃) recoveries of (50%) were achieved and Gallium oxide (Ga₂O₃) recoveries of (34%) were achieved. These assays were conducted by Australian Laboratory Services (ALS) Brisbane. The objective of the diagnostic test work was to recover REO, Sc₂O₃ and Ga₂O₃ from the beneficiated sample using alternative conditions to previous metallurgical programs, that successfully demonstrated increased extractions at higher temperature (from 25°C to 100°C). LS Metallurgy Perth, Western Australia was appointed in September, 2025 to carry out simple wet classification to isolate the -10.8 µm fraction from a bulk sample composited from the North Stanmore resource area. Grades were assayed on head and fraction products. No chemical upgrading or complex mineral separation was applied. Results demonstrate intrinsic deportment of key critical elements into ultra fine particles, providing a low-capex, low-opex front end upgrade option that reduces throughput of less critical elements and gangue materials. 			
		REI	HEAD GR	ADE <10.8 μm	PERCENT
		Tk	(ppm		O) CHANGE >52%
		Dy			>25%
		Sc	30,0	60,0	>100%
Environme ntal factors or assumption s	residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions	protoco • An envi Prefeas nearby practica	ols. ironmental stud ibility study. It is the mined pits a able. Tailings wil	y is currently underw s assumed that wast and may also be back Il be pumped as a slu rned to cells within m	vay as part of the e will be stockpiled cfilled where rry from the process
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. 	drillhol reading • Core le diamor • Regress	es at 10cm dept (s. ngth, diameter and drillholes for s (sion analysis wa	density is available for the increments, for a to and weight are available for readings as performed to componensity.	otal of 5,896 able for 8 of the

Criteria	JORC Code explanation	Commentary		
		 A single density value was applied regardless of mineralisation profile estimate the MRE tonnage. 		
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.	Downhole density measurements v diamond drillholes at 10cm depth i readings. No anomalous density re data. Downhole geophysical densit in rod, then corrected to account for calculated from a calibration drillhole.	ncrements, for 5,896 adings were observed in the y measurements were taken or this, using a factor	
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Core length, diameter and weight a diamond drillholes for a total of 50 information, density was calculated Density = Where "r" is the radius of the PQ collength of the core in metres, and "In the density was converted from kg consistency with units used for down Four anomalous calculated density where density <1 g/cm3. Regression calculate the density from geophyshigh grade and low-grade domains regression analysis for the High-graf for the low-grade domain 2.02t/m3.	readings. From this dusing the formula: $\frac{m}{\pi r^2 h}$ ore (0.0425m), "h" is the m" is the mass in kilograms. /m3 to g/cm3 for vnhole geophysical density. values were identified in analysis was applied to ical measurements for the . The mean density from ide domain is 1.75t/m3, and	
		The following densities have been a	applied to the MRE.	
		Geology domain	Dry bulk density (t/m³)	
		Colluvium	1.7	
		Saprolite (LG & HG)	1.71	
		Sap Rock (LG & HG)	2.18	
		Slightly Weathered (LG & HG)	2.2	
		Basement (LG & HG)	2.3	
Classificati on	The basis for the classification of the Mineral Resources into varying confidence categories.	 Mineral Resources were classified as Indicated and Inferred. Material not classified as either indicated or inferred Material remains unclassified and has been reported as an Exploration Target. Indicated Mineral Resource classification was based on drillhole spacing (250 x 100m closing to 50 x 50m in some areas), acceptable underlying QAQC, and RTK/DGPS survey of drillhole collar. The DGPS survey provided increased certainty regarding the drillhole collar location and compensated for a low-resolution topography survey. The topographical surface was adjusted to include the DGPS surveyed drillhole collar coordinates. 55% (by tonnage) of the MRE is classified as Indicated Mineral Resources, 45% (by tonnage) is classified as Inferred Mineral Resources. 		
	 Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, 	 Grade and tonnage estimation has MRE classification. The Competent Person/s have cons 		

Criteria	JORC Code explanation	Commentary
	confidence in continuity of geology and metal values, quality, quantity and distribution of the data). • Whether the result appropriately reflects the Competent Person's view of the deposit.	The MRE classification of Inferred and Indicated MRE reflects the Competent Persons understanding of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 MEC has conducted an internal review of the RSC August 2023 MRE. MEC conducted an audit in May 2025 of the geological logging by reviewing the chip trays. Several drillholes were selected and the chips checked. The audit found that there was strong agreement between the logging and the chip trays. The quality of logging from a limited test program was found to be good.
Discussion of relative accuracy/ confidence	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	No statistical test of the accuracy and confidence in the MRE has been undertaken. The low variability of the mineralisation grades, the relatively consistent mineralisation geometry, the geometry and large areal extent of the mineralisation provide qualitative confidence in the MRE.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The estimate is considered a good global estimate, and the relative confidence in the underlying data (QAQC), drillhole spacing, geological continuity and interpretation, has been appropriately reflected by the Competent Person/s in the Resource Classification.
	 These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	There has been no production at the North Stanmore project.